[Algorithm] Write a Depth First Search Algorithm for Graphs in JavaScript
Depth first search is a graph search algorithm that starts at one node and uses recursion to travel as deeply down a path of neighboring nodes as possible, before coming back up and trying other paths.
const {createQueue} = require('./queue');
function createNode(key) {
let children = [];
return {
key,
children,
addChild(child) {
children.push(child)
}
}
}
function createGraph(directed = false) {
const nodes = [];
const edges = [];
return {
nodes,
edges,
directed,
addNode(key) {
nodes.push(createNode(key))
},
getNode (key) {
return nodes.find(n => n.key === key)
},
addEdge (node1Key, node2Key) {
const node1 = this.getNode(node1Key);
const node2 = this.getNode(node2Key);
node1.addChild(node2);
if (!directed) {
node2.addChild(node1);
}
edges.push(`${node1Key}${node2Key}`)
},
print() {
return nodes.map(({children, key}) => {
let result = `${key}`;
if (children.length) {
result += ` => ${children.map(n => n.key).join(' ')}`
}
return result;
}).join('\n')
},
/**
* Breadth First Search
*/
bfs (startNodeKey = "", visitFn = () => {}) {
/**
* Keytake away:
* 1. Using Queue to get next visit node
* 2. Enqueue the node's children for next run
* 3. Hashed visited map for keep tracking visited node
*/
const startNode = this.getNode(startNodeKey);
// create a hashed map to check whether one node has been visited
const visited = this.nodes.reduce((acc, curr) => {
acc[curr.key] = false;
return acc;
}, {});
// Create a queue to put all the nodes to be visited
const queue = createQueue();
queue.enqueue(startNode);
// start process
while (!queue.isEmpty()) {
const current = queue.dequeue();
// check wheather the node exists in hashed map
if (!visited[current.key]) {
visitFn(current);
visited[current.key] = true;
// process the node's children
current.children.map(n => {
if (!visited[n.key]) {
queue.enqueue(n);
}
});
}
}
},
/**
* Depth First Search
*/
dfs (startNodeKey = "", visitFn = () => {}) {
// get starting node
const startNode = this.getNode(startNodeKey);
// create hashed map
const visited = this.nodes.reduce((acc, curr) => {
acc[curr] = false;
return acc;
}, {});
function explore(node) {
// if already visited node, return
if (visited[node.key]) {
return;
}
// otherwise call the callback function
visitFn(node);
// Set nodekey to be visited
visited[node.key] = true;
// Continue to explore its children
node.children.forEach(n => {
explore(n);
});
}
// start exploring
explore(startNode);
}
}
}
const graph = createGraph(true)
graph.addNode('Kyle')
graph.addNode('Anna')
graph.addNode('Krios')
graph.addNode('Tali')
graph.addEdge('Kyle', 'Anna')
graph.addEdge('Anna', 'Kyle')
graph.addEdge('Kyle', 'Krios')
graph.addEdge('Kyle', 'Tali')
graph.addEdge('Anna', 'Krios')
graph.addEdge('Anna', 'Tali')
graph.addEdge('Krios', 'Anna')
graph.addEdge('Tali', 'Kyle')
console.log(graph.print())
const nodes = ['a', 'b', 'c', 'd', 'e', 'f']
const edges = [
['a', 'b'],
['a', 'e'],
['a', 'f'],
['b', 'd'],
['b', 'e'],
['c', 'b'],
['d', 'c'],
['d', 'e']
]
const graph2 = createGraph(true)
nodes.forEach(node => {
graph2.addNode(node)
})
edges.forEach(nodes => {
graph2.addEdge(...nodes)
})
console.log('***Breadth first graph***')
graph2.bfs('a', node => {
console.log(node.key)
})
console.log('***Depth first graph***')
graph2.dfs('a', node => {
console.log(node.key)
})
So Depth first Search VS Breadth first Search:
Using 'depth' in JS, we should remind ourselves recursion, which using Stack data structure, FILO;
Using 'breadth', we should remind ourselves Queue, it is FIFO data structure, we just need to enqueue the all the children.

浙公网安备 33010602011771号