分类与监督学习,朴素贝叶斯分类算法
11.分类与监督学习,朴素贝叶斯分类算法
1.理解分类与监督学习、聚类与无监督学习。
简述分类与聚类的联系与区别。
答:分类指监督学习,就是按照某种标准给对象贴标签,再根据标签来区分归类。聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。指无监督学习。
区别是,分类是事先定义好类别 ,聚类则没有事先预定的类别。
2.朴素贝叶斯分类算法 实例
利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。
有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数
目标分类变量疾病:
–心梗
–不稳定性心绞痛
新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)
最可能是哪个疾病?
上传手工演算过程。
性别
年龄
KILLP
饮酒
吸烟
住院天数
疾病
1
男
80
1
是
是
7-14
心梗
2
女
70-80
2
否
是
<7
心梗
3
女
70-81
1
否
否
<7
不稳定性心绞痛
4
女
<70
1
否
是
14
心梗
5
男
70-80
2
是
是
7-14
心梗
6
女
80
2
否
否
7-14
心梗
7
男
70-80
1
否
否
7-14
心梗
8
女
70-80
2
否
否
7-14
心梗
9
女
70-80
1
否
否
<7
心梗
10
男
<70
1
否
否
7-14
心梗
11
女
80
3
否
是
<7
心梗
12
女
70-80
1
否
是
7-14
心梗
13
女
80
3
否
是
7-14
不稳定性心绞痛
14
男
70-80
3
是
是
14
不稳定性心绞痛
15
女
<70
3
否
否
<7
心梗
16
男
70-80
1
否
否
14
心梗
17
男
<70
1
是
是
7-14
心梗
18
女
70-80
1
否
否
14
心梗
19
男
70-80
2
否
否
7-14
心梗
20
女
<70
3
否
否
<7
不稳定性心绞痛
3.使用朴素贝叶斯模型对iris数据集进行花分类。
尝试使用3种不同类型的朴素贝叶斯:
高斯分布型
多项式型
伯努利型
并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

浙公网安备 33010602011771号