AT_agc013_e [AGC013E] Placing Squares 题解
把 $\prod a_i^2$ 转化成组合意义,即在每个正方形的底边中放不同的两个球的方案数。
设 $f_{i,j}$ 表示考虑到第 $i$ 个点,最后一条底边放了 $j$ 个球,
若第 $i$ 个点被标记,则:
$$ \begin{aligned} &f_{i+1,0}=f_{i,0}\\ &f_{i+1,1}=2f_{i,0}+f_{i,1}\\ &f_{i+1,2}=f_{i,0}+f_{i,1}+f_{i,2} \end{aligned} $$
若第 $i$ 个点没有被标记,则:
$$ \begin{aligned} &f_{i+1,0}=f_{i,0}+f_{i,2}\\ &f_{i+1,1}=2f_{i,0}+f_{i,1}+2f_{i,2}\\ &f_{i+1,2}=f_{i,0}+f_{i,1}+2f_{i,2} \end{aligned} $$
矩阵加速即可。
#include <cstdio>
#include <cstring>
#define M 1000000007
#define int long long
int n, m, a[100050];
struct S
{
int a[3][3];
S() { memset(a, 0, sizeof a); }
S operator*(S b)
{
S c;
for (int i = 0; i < 3; ++i)
for (int j = 0; j < 3; ++j)
{
for (int k = 0; k < 3; ++k)
c.a[i][j] += a[i][k] * b.a[k][j];
c.a[i][j] %= M;
}
return c;
}
} z, x, y;
S P(S x, int y)
{
S q;
for (int i = 0; i < 3; ++i)
q.a[i][i] = 1;
for (; y; y >>= 1, x = x * x)
if (y & 1)
q = q * x;
return q;
}
signed main()
{
for (int i = 0; i < 3; ++i)
z.a[i][i] = 1;
x.a[0][0] = x.a[0][2] = x.a[1][1] = x.a[1][2] = x.a[2][0] = y.a[0][0] = y.a[0][2] = y.a[1][1] = y.a[1][2] = y.a[2][2] = 1;
x.a[0][1] = x.a[2][1] = x.a[2][2] = y.a[0][1] = 2;
scanf("%lld%lld", &n, &m);
if (!m)
return !printf("%lld", P(x, n).a[0][2]);
a[0] = -1;
for (int i = 1; i <= m; ++i)
scanf("%d", a + i), z = z * P(x, a[i] - a[i - 1] - 1) * y;
z = z * P(x, n - a[m] - 1);
printf("%lld", z.a[0][2]);
return 0;
}

浙公网安备 33010602011771号