学习意志:“柚子曲线”与圆的交点个数的代数证明
题目
已知 \(C_1:x^2+y^2=a\),\(C_2:x^2+xy+y^2=x^4+x^3y+x^2y^2+xy^3+y^4\),求 \(|C_1 \cap C_2|\)。(By \(\text{Geometry11}\))
解答(by \(\text{2021hych}\))
解:考虑一个线性变换 \(\rho :\mathbb{R}^2 \to \mathbb{R}^2\),其中 \(\rho ((x,y))=\left(\dfrac{x+y}{2},\dfrac{x-y}{2}\right)\),则 \(\rho^{-1} ((x,y))=(x+y,x-y)\),从而 \(\rho\) 是一个双射,记 \(C_3=\rho(C_1)\),\(C_4=\rho(C_2)\),则:
且必有:\(|C_1 \cap C_2|=|C_3 \cap C_4|\),方便起见记 \(b=\dfrac{a}{2}\)。
\(1. b \in (-\infty,0)\) 时,\(C_3=\varnothing \Rightarrow |C_1 \cap C_2|=|C_3 \cap C_4|=0\)。
\(2. b =0\) 时,\(C_3=\{(0,0)\} \subseteq C_4 \Rightarrow |C_1 \cap C_2|=|C_3 \cap C_4|=1\)。
\(3. b \in (0,\infty)\) 时,令 \(l=x^2\),则 \(l \in [0,b]\),\(y^2=b-l\),代入到 \(C_4\) 中:
记 \(f(l)=4l^2+(2-8b)l+b-b^2\),则 \(y=f(l)\) 为一个二次函数,对称轴为 \(l=\dfrac{4b-1}{4}\)。记 \(t=\dfrac{4b-1}{4}\)。我们先来考虑 \(f(l)=0\) 在 \([0,b]\) 上的解的个数。
\(f(l)=0\) 的判别式为 \(\Delta=(2-8b)^2-16(b-b^2)=4(10b-1)(2b-1)\)
- \(f(l)=0\) 无解。则有以下几种情况:
\(1\). \(\Delta<0\)
\(2\). \(\Delta=0,t<0\)
\(3\). \(\Delta=0,b<t\)
\(4\). \(\Delta>0,f(0)<0,f(b)<0\)
\(5\). \(\Delta>0,f(0)>0,t<0\)
\(6\). \(\Delta>0,f(b)>0,b<t\)
解得 \(b \in \left(0,\dfrac{1}{2}\right) \bigcup \left(1,+\infty\right)\)。 - \(f(l)=0\) 有两个相同的解。则有以下几种情况:
\(1\). \(\Delta=0,0 \le t \le b\)
\(2\). \(\Delta>0,f(0) \ge 0,f(b)<0\)
\(3\). \(\Delta>0,f(0) \ge 0,f(b)=0,b \le t\)
\(4\). \(\Delta>0,f(b) \ge 0,f(0)<0\)
\(5\). \(\Delta>0,f(b) \ge 0,f(0)=0,t \le 0\)
解得 \(b \in \left\{\dfrac{1}{2}\right\} \bigcup \left(\dfrac{3}{5},1\right]\)。 - \(f(l)=0\) 有两个不同的解。则:
\(\Delta>0,f(0)\ge 0,f(b) \ge 0,0 \le t \le b\)
解得 \(b \in \left(\dfrac{1}{2},\dfrac{3}{5}\right]\)。
回到原问题:
- 当 \(b \in \left(0,\dfrac{1}{2}\right) \bigcup \left(1,+\infty\right)\) 即 \(a \in \left(0,1\right) \bigcup \left(2,+\infty\right)\) 时:
\(|C_1 \cap C_2|=|C_3 \cap C_4|=0\)。 - 当 \(b \in \left\{\dfrac{1}{2}\right\} \bigcup \left(\dfrac{3}{5},1\right]\) 即 \(a \in \left\{1\right\} \bigcup \left(\dfrac{6}{5},2\right]\) 时:
\(f(l)=0\) 有两个相同的解,设 \(l_1=l_2=l\),有以下几种情况:
\(1\). \(l=0\) 时,\(f(0)=0 \Rightarrow b=1,a=2,x=0,y=\pm 1 \Rightarrow |C_1 \cap C_2|=|C_3 \cap C_4|=2\) 。
\(2\). \(l=b\) 时,\(f(b)=0 \Rightarrow b=\dfrac{3}{5}\)(舍去)。
\(3\). \(0<l<b\) 时,\(b\in \left\{\dfrac{1}{2}\right\} \bigcup \left(\dfrac{3}{5},1\right),a\in \left\{1\right\} \bigcup \left(\dfrac{6}{5},2\right) ,x=\pm \sqrt{l},y=\pm \sqrt{b-l} \Rightarrow |C_1 \cap C_2|=|C_3 \cap C_4|=4\)。 - 当 \(b \in \left(\dfrac{1}{2},\dfrac{3}{5}\right]\) 即 \(a \in \left(1,\dfrac{6}{5}\right]\) 时:
\(f(l)=0\) 有两个不同的解,设 \(l_1<l_2\),有以下几种情况:
\(1\). \(l_1=0\) 时,\(f(0)=0 \Rightarrow b=1\)(舍去)。
\(2\). \(0<l_1<l_2=b\) 时,\(f(b)=0 \Rightarrow b=\dfrac{3}{5},a=\dfrac{6}{5},x=\pm \dfrac{\sqrt{15}}{5},y=0\) 或 \(x=\pm\sqrt{l_1},y=\pm\sqrt{b-l_1} \Rightarrow |C_1 \cap C_2|=|C_3 \cap C_4|=6\) 。
\(3\). \(0<l_1<l_2<b\) 时,\(b\in\left(\dfrac{1}{2},\dfrac{3}{5}\right),a\in\left(1,\dfrac{6}{5}\right),x=\pm \sqrt{l_1},y=\pm \sqrt{b-l_1}\) 或 \(x=\pm \sqrt{l_2},y=\pm \sqrt{b-l_2}\Rightarrow |C_1 \cap C_2|=|C_3 \cap C_4|=8\) 。
综上所述:

浙公网安备 33010602011771号