【sparkSQL】创建DataFrame及保存
首先我们要创建SparkSession
val spark = SparkSession.builder()
.appName("test")
.master("local")
.getOrCreate()
import spark.implicits._ //将RDD转化成为DataFrame并支持SQL操作
然后我们通过SparkSession来创建DataFrame
1.使用toDF函数创建DataFrame
通过导入(importing)spark.implicits, 就可以将本地序列(seq), 数组或者RDD转为DataFrame。
只要这些数据的内容能指定数据类型即可。
import spark.implicits._
val df = Seq(
(1, "zhangyuhang", java.sql.Date.valueOf("2018-05-15")),
(2, "zhangqiuyue", java.sql.Date.valueOf("2018-05-15"))
).toDF("id", "name", "created_time")

注意:如果直接用toDF()而不指定列名字,那么默认列名为"_1", "_2"
可以通过df.withColumnRenamed("_1", "newName1").withColumnRenamed("_2", "newName2")进行修改列名
2.使用createDataFrame函数创建DataFrame
通过schema + row 来创建
我们可以通俗的理解为schema为表的表头,row为表的数据记录
import org.apache.spark.sql.types._
//定义dataframe的结构的schema
val schema = StructType(List(
StructField("id", IntegerType, nullable = false),
StructField("name", StringType, nullable = true),
StructField("create_time", DateType, nullable = true)
))
//定义dataframe内容的rdd
val rdd = sc.parallelize(Seq(
Row(1, "zhangyuhang", java.sql.Date.valueOf("2018-05-15")),
Row(2, "zhangqiuyue", java.sql.Date.valueOf("2018-05-15"))
))
//创建dataframe
val df = spark.createDataFrame(rdd, schema)

不过,我们可以把文件结构当做参数来使用,通过rdd自动产生schema和row,不用自己手动生成。
import org.apache.spark.sql.types._
//传入属性参数
val schemaString = " id name create_time"
//解析参数变成StructField
val fields = schemaString.split(" ")
.map(fieldName => StructField(fieldname, StringType, nullable = true))
//定义dataframe的结构的schema
val schema = StructType(fields)
//定义dataframe内容的rdd
val lines = sc.textFile("file:///people.txt")
val rdd = lines.spilt(_.split(","))
.map(attributes=>ROW(attributes(0),attributes(1).trim) )
//创建dataframe
val df = spark.createDataFrame(rdd, schema)
3.通过反射机制创建DataFrame
首先要定义一个case class,因为只有case class才能被Spark隐式转化为DataFrame
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import spark.implicits._
//创建匹配类
case class Person(id:Int,name:String,age:Long)
//读取文件生成rdd
val rdd = sc.textFile("file:///")
//通过匹配类把rdd转化成dataframe
val df = rdd.map(_.split(","))
.map(attributes => Person(attributes(0),attributes(1),attributes(2).trim.toInt)) .toDF()
4.通过文件直接创建DataFrame
(1)使用parquet文件read创建
val df = spark.read.parquet("hdfs:/path/to/file")
(2)使用json文件read创建
val df = spark.read.json("examples/src/main/resources/people.json")
(3)使用csv文件load创建
val df = spark.read
.format("com.databricks.spark.csv")
.option("header", "true") //reading the headers
.option("mode", "DROPMALFORMED")
.load("csv/file/path")
(4)使用Hive表创建
spark.table("test.person") // 库名.表名 的格式
.registerTempTable("person") // 注册成临时表
spark.sql(
"""
| select *
| from person
| limit 10
""".stripMargin).show()
记得,最后我们要调用spark.stop()来关闭SparkSession。
5.保存
(1)通过df.write.format().save("file:///")保存
write.format()支持输出的格式有 JSON、parquet、JDBC、orc、csv、text等文件格式
,save()定义保存的位置
当我们保存成功后可以在保存位置的目录下看到文件,但是这个文件并不是一个文件而是一个目录。
里面的内容一般为

不用担心,这是没错的。
我们读取的时候,并不需要使用文件夹里面的part-xxxx文件,直接读取目录即可。
(2)通过df.rdd.saveAsTextFile("file:///")转化成rdd再保存
我们对于不同格式的文件读写来说,我们一般使用两套对应方式
val df = spark.read.格式("file:///")//读取文件
df.write.格式("file:///")//保存文件
val df = spark.read.format("").load("file:///")//读取文件
df.write.save("file:///")//保存文件
具体read和load方法有什么不同,我还不是很清楚,弄明白了回来补充。
6.通过JDBC创建DataFrame
我们在启动Spark-shell或者提交任务的时候需要添加相应的jar包
spark-shell(spark-submit)
--jars /usr/local/spark/mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar \
--driver-class-path /usr/local/spark/mysql-connector-java-5.1.40-bin.jar
val jdbcDf = spark.read.format("jdbc")
.option("driver", "com.mysql.jdbc.Driver") //驱动
.option("url", "jdbc:mysql://ip:3306") //数据库地址
.option("dbtable", "db.user_test") //表名:数据库名.表名
.option("user", "test") //用户名
.option("password", "123456") //密码
.load()
jdbcDf.show()

浙公网安备 33010602011771号