Codeforces Round #690 (Div. 3)
比赛链接
Codeforces Round #690 (Div. 3)
F. The Treasure of The Segments
有 \(n\) 个区间,要求删除最少的区间,使剩下的区间中至少存在一个区间,使得其他区间与该区间都有交集
解题思路
树状数组,二分
先按左端点排序,遍历该特殊区间,找出前后与该区间有交集的数量即可,即对于当前区间 \([l,r]\),寻找前面有多少个区间 \([l_i,r_i]\) 满足 \(l\leq r_i\),这个可以先将所有的端点离散化在用树状数组查询,同时还需查询后面有多少区间满足 \(l_i\geq r\),二分即可
- 时间复杂度:\(O(nlogn)\)
代码
// Problem: F. The Treasure of The Segments
// Contest: Codeforces - Codeforces Round #690 (Div. 3)
// URL: https://codeforces.com/contest/1462/problem/F
// Memory Limit: 256 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
// %%%Skyqwq
#include <bits/stdc++.h>
//#define int long long
#define help {cin.tie(NULL); cout.tie(NULL);}
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
template <typename T> bool chkMax(T &x, T y) { return (y > x) ? x = y, 1 : 0; }
template <typename T> bool chkMin(T &x, T y) { return (y < x) ? x = y, 1 : 0; }
template <typename T> void inline read(T &x) {
int f = 1; x = 0; char s = getchar();
while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); }
while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();
x *= f;
}
const int N=2e5+5;
int t,n,tr[N*2];
PII a[N];
vector<int> xs;
int find(int x)
{
return lower_bound(xs.begin(),xs.end(),x)-xs.begin()+1;
}
void add(int x,int y)
{
for(;x<N*2;x+=x&-x)tr[x]+=y;
}
int ask(int x)
{
int res=0;
for(;x;x-=x&-x)res+=tr[x];
return res;
}
int main()
{
for(cin>>t;t;t--)
{
cin>>n;
xs.clear();
for(int i=1;i<=n;i++)cin>>a[i].fi>>a[i].se,xs.pb(a[i].fi),xs.pb(a[i].se);
sort(xs.begin(),xs.end());
xs.erase(unique(xs.begin(),xs.end()),xs.end());
sort(a+1,a+1+n);
int res=n-1;
for(int i=1;i<=n;i++)
{
int l=a[i].fi,r=a[i].se;
int pos=upper_bound(a+1,a+1+n,mkp(r,2000000000))-a-1;
int t=max(0,pos-i);
t+=ask(xs.size()+1-find(l));
add(xs.size()+1-find(r),1);
res=min(res,n-1-t);
}
for(int i=1;i<=n;i++)add(xs.size()+1-find(a[i].se),-1);
cout<<res<<'\n';
}
return 0;
}

浙公网安备 33010602011771号