MapReduce编程:词频统计

首先在项目的src文件中需要加入以下文件,log4j的内容为:
log4j.rootLogger=INFO, stdout log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n log4j.appender.logfile=org.apache.log4j.FileAppender log4j.appender.logfile.File=target/spring.log log4j.appender.logfile.layout=org.apache.log4j.PatternLayout log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
代码如下:
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public WordCount() {
}
//main函数,MapReduce程序运行的入口
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); //指定HDFS相关的参数
//String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
String[] otherArgs = new String[]{"input","output"};
if(otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
//通过Job类设置Hadoop程序运行时的环境变量
Job job = Job.getInstance(conf, "word count"); //设置环境参数
job.setJarByClass(WordCount.class); //设置整个程序的类名
job.setMapperClass(WordCount.TokenizerMapper.class); //添加Mapper类
job.setCombinerClass(WordCount.IntSumReducer.class);
job.setReducerClass(WordCount.IntSumReducer.class); //添加Reducer类
job.setOutputKeyClass(Text.class); //设置输出类型,因为输出的形式是<单词,个数>,所以这里用Text,类似于Java的String,但还是有些区别
job.setOutputValueClass(IntWritable.class); //设置输出类型,类似于Java的Int
for(int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i])); //设置输入文件
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1])); //设置输出文件
System.exit(job.waitForCompletion(true)?0:1); //提交作业
}
//Reduce处理逻辑
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public IntSumReducer() {
}
public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
val = (IntWritable)i$.next();
}
this.result.set(sum);
context.write(key, this.result);
}
}
//Map处理逻辑
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private static final IntWritable one = new IntWritable(1);
private Text word = new Text();
public TokenizerMapper() {
}
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); //分词器
while(itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one); //输出键值对
//这里也可以直接写成context.write(new Text(word), new IntWritable(1));
}
}
}
}

浙公网安备 33010602011771号