实验二
一、实验内容
任务一:
代码组织:
T.h 内容:类T的声明、友元函数声明
T.cpp 内容:类T的实现、友元函数实现
task1.cpp 内容:测试模块、main函数
头文件T.h
1 #pragma once 2 3 #include <string> 4 5 // 类T: 声明 6 class T { 7 // 对象属性、方法 8 public: 9 T(int x = 0, int y = 0); 10 T(const T &t); 11 T(T &&t); // 移动构造函数 12 ~T(); 13 14 void adjust(int ratio); // 按系数成倍调整数据 15 void display() const; // 以(m1, m2)形式显示T类对象信息 16 17 private: 18 int m1, m2; 19 20 // 类属性、方法 21 public: 22 static int get_cnt(); // 显示当前T类对象总数 23 24 public: 25 static const std::string doc; // 类T的描述信息 26 static const int max_cnt; // 类T对象上限 27 28 private: 29 static int cnt; // 当前T类对象数目 30 31 // 类T友元函数声明 32 friend void func(); 33 }; 34 35 // 普通函数声明 36 void func();
T.cpp
1 #include "T.h" 2 #include <iostream> 3 #include <string> 4 5 // 类T实现 6 // static成员数据类外初始化 7 const std::string T::doc{"a simple class sample"}; 8 const int T::max_cnt = 999; 9 int T::cnt = 0; 10 11 // 类方法 12 int T::get_cnt() 13 { 14 return cnt; 15 } 16 17 // 对象方法 18 T::T(int x, int y): m1{x}, m2{y} 19 { 20 ++cnt; 21 std::cout << "T constructor called.\n"; 22 } 23 24 T::T(const T &t): m1{t.m1}, m2{t.m2} 25 { 26 ++cnt; 27 std::cout << "T copy constructor called.\n"; 28 } 29 30 T::T(T &&t): m1{t.m1}, m2{t.m2} 31 { 32 ++cnt; 33 std::cout << "T move constructor called.\n"; 34 } 35 36 T::~T() 37 { 38 --cnt; 39 std::cout << "T destructor called.\n"; 40 } 41 42 void T::adjust(int ratio) 43 { 44 m1 *= ratio; 45 m2 *= ratio; 46 } 47 48 void T::display() const 49 { 50 std::cout << "(" << m1 << ", " << m2 << ")" ; 51 } 52 53 // 普通函数实现 54 void func() 55 { 56 T t5(42); 57 t5.m2 = 2049; 58 std::cout << "t5 = "; t5.display(); std::cout << '\n'; 59 }
源代码task1.cpp
1 #include "T.h" 2 #include <iostream> 3 4 void test_T(); 5 6 int main() 7 { 8 std::cout << "test Class T: \n"; 9 test_T(); 10 11 std::cout << "\ntest friend func: \n"; 12 func(); 13 } 14 15 void test_T() 16 { 17 using namespace std; 18 19 cout << "T info: " << T::doc << endl; 20 cout << "T objects'max count: " << T::max_cnt << endl; 21 cout << "T objects'current count: " << T::get_cnt() << endl << endl; 22 23 T t1; 24 cout << "t1 = "; t1.display(); cout << endl; 25 26 T t2(3, 4); 27 cout << "t2 = "; t2.display(); cout << endl; 28 29 T t3(t2); 30 t3.adjust(2); 31 cout << "t3 = "; t3.display(); cout << endl; 32 33 T t4(std::move(t2)); 34 cout << "t4 = "; t4.display(); cout << endl; 35 36 cout << "test: T objects'current count: " << T::get_cnt() << endl; 37 }
运行结果图:

观察与思考:
问题1:
T.h中,在类T内部,已声明func是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行。
如果能,回答YES;如果不能,以截图形式提供编译报错信息,说明原因。
不能,截图如下,原因是类内部声明友元函数func后,若类外部不进行函数声明,编译器无法识别func的定义(若存在)或调用,会因 “未声明的标识符” 报错。

问题2:
T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。
| 函数 | 功能 | 调用时机 |
| 普通构造函数 | 初始化类的对象,为对象的成员变量分配内存并赋予初始值 | 创建类的对象时调用 |
| 复制构造函数 | 用已存在的同类型对象初始化新对象 | 用对象初始化新对象时、函数按值传递类对象参数时、函数返回类对象(非引用)时 |
| 移动构造函数 | 利用临时对象的资源初始化新对象,避免不必要的拷贝,提高性能 | 当有右值引用的类对象作为初始化源时(如返回临时对象、用std::move转换的对象初始化新对象) |
| 析构函数 | 释放对象占用的资源(如动态分配的内存),完成对象销毁前的清理工作 | 对象生命周期结束时自动调用 |
问题3:
T.cpp中,line13-15,剪切到T.h的末尾,重新编译,程序能否正确编译。
如不能,以截图形式给出报错信息,分析原因。
不能,截图如下。原因是类的静态成员初始化代码属于类外定义,若剪切到头文件(.h)末尾,会导致重复定义(因为头文件可能被多个源文件包含)。静态成员的类外初始化应放在.cpp文件中,保证只定义一次。

任务二:
Complex.h
1 #ifndef COMPLEX_H 2 #define COMPLEX_H 3 4 #include <string> 5 class Complex{ 6 public: 7 static const std::string doc; 8 9 Complex(double r=0.0,double i=0.0); 10 Complex(const Complex& other); 11 12 double get_real() const; 13 double get_imag() const; 14 15 void add(const Complex& other); 16 17 friend void output(const Complex &c); 18 friend double abs(const Complex& c); 19 20 friend Complex add(const Complex& c1,const Complex& c2); 21 22 friend bool isequal(const Complex& c1,const Complex& c2); 23 friend bool is_not_equal(const Complex& c1,const Complex& c2); 24 25 private: 26 double real,imag; 27 }; 28 29 void output(const Complex &c); 30 double abs(const Complex& c); 31 32 Complex add(const Complex& c1,const Complex& c2); 33 34 bool isequal(const Complex& c1,const Complex& c2); 35 bool is_not_equal(const Complex& c1,const Complex& c2); 36 37 #endif
Complex.cpp
1 #include "Complex.h" 2 #include <string> 3 #include <iostream> 4 #include <cmath> 5 using namespace std; 6 const string Complex::doc="a simplified complex class"; 7 Complex::Complex(double r,double i):real(r),imag(i){ } 8 Complex::Complex(const Complex& other):real(other.real),imag(other.imag){ } 9 double Complex::get_real() const{ 10 return real; 11 } 12 double Complex::get_imag() const { 13 return imag; 14 } 15 void Complex::add(const Complex& other){ 16 real+=other.real; 17 imag+=other.imag; 18 } 19 void output(const Complex& c) { 20 cout << c.real; 21 if (c.imag >= 0) { 22 cout << " + " << c.imag << "i"<<endl; 23 } else { 24 cout << " - " << -c.imag << "i"<<endl; 25 } 26 } 27 double abs(const Complex& c){ 28 double r,i; 29 r=c.real;i=c.imag; 30 return sqrt(r*r+i*i); 31 } 32 Complex add(const Complex& c1,const Complex& c2) 33 { 34 double r,i; 35 r=c1.real+c2.real; 36 i=c1.imag+c2.imag; 37 return Complex(r,i); 38 } 39 bool isequal(const Complex& c1,const Complex& c2){ 40 if(c1.real==c2.real&&c1.imag==c2.imag) 41 return true; 42 return false; 43 } 44 bool is_not_equal(const Complex& c1,const Complex& c2){ 45 if(!isequal(c1,c2)) 46 return true; 47 return false; 48 }
task2.cpp
1 #include "Complex.h" 2 #include <iostream> 3 #include <iomanip> 4 #include <complex> 5 6 void test_Complex(); 7 void test_std_complex(); 8 9 int main() { 10 std::cout << "*******测试1: 自定义类Complex*******\n"; 11 test_Complex(); 12 13 std::cout << "\n*******测试2: 标准库模板类complex*******\n"; 14 test_std_complex(); 15 } 16 17 void test_Complex() { 18 using std::cout; 19 using std::endl; 20 using std::boolalpha; 21 22 cout << "类成员测试: " << endl; 23 cout << Complex::doc << endl << endl; 24 25 cout << "Complex对象测试: " << endl; 26 Complex c1; 27 Complex c2(3, -4); 28 Complex c3(c2); 29 Complex c4 = c2; 30 const Complex c5(3.5); 31 32 cout << "c1 = "; output(c1); cout << endl; 33 cout << "c2 = "; output(c2); cout << endl; 34 cout << "c3 = "; output(c3); cout << endl; 35 cout << "c4 = "; output(c4); cout << endl; 36 cout << "c5.real = " << c5.get_real() 37 << ", c5.imag = " << c5.get_imag() << endl << endl; 38 39 cout << "复数运算测试: " << endl; 40 cout << "abs(c2) = " << abs(c2) << endl; 41 c1.add(c2); 42 cout << "c1 += c2, c1 = "; output(c1); cout << endl; 43 cout << boolalpha; 44 cout << "c1 == c2 : " << isequal(c1, c2) << endl; 45 cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl; 46 c4 = add(c2, c3); 47 cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl; 48 } 49 50 void test_std_complex() { 51 using std::cout; 52 using std::endl; 53 using std::boolalpha; 54 55 cout << "std::complex<double>对象测试: " << endl; 56 std::complex<double> c1; 57 std::complex<double> c2(3, -4); 58 std::complex<double> c3(c2); 59 std::complex<double> c4 = c2; 60 const std::complex<double> c5(3.5); 61 62 cout << "c1 = " << c1 << endl; 63 cout << "c2 = " << c2 << endl;
64 cout << "c3 = " << c3 << endl; 65 cout << "c4 = " << c4 << endl; 66 67 cout << "c5.real = " << c5.real() 68 << ", c5.imag = " << c5.imag() << endl << endl; 69 70 cout << "复数运算测试: " << endl; 71 cout << "abs(c2) = " << abs(c2) << endl; 72 c1 += c2; 73 cout << "c1 += c2, c1 = " << c1 << endl; 74 cout << boolalpha; 75 cout << "c1 == c2 : " << (c1 == c2)<< endl; 76 cout << "c1 != c2 : " << (c1 != c2) << endl; 77 c4 = c2 + c3; 78 cout << "c4 = c2 + c3, c4 = " << c4 << endl; 79 }
运行测试结果截图:

观察与思考:
问题1:
比较自定义类Complex和标准库模板类complex的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?
简洁性:标准库模板类complex更简洁。它通过运算符重载(如+=、+、==等)实现操作,形式更贴近自然数学表达式,符合程序员的使用习惯。
函数和运算的内在关联:标准库的运算符本质是函数的重载,功能一致,只是表现形式不同。
问题2:
2-1:自定义Complex中, output/abs/add/ 等均设为友元,它们真的需要访问 私有数据 吗?(回答“是/否”并给出理由)
是。因为output需要访问复数的实部和虚部来输出,abs需要根据实部和虚部计算模长,add需要访问两个复数的实部和虚部来做加法,这些操作都依赖类的私有数据,所以需要设为友元。
2-2:标准库 std::complex 是否把 abs 设为友元?(查阅 cppreference后回答)
否。标准库std::complex的abs函数是通过公有接口(如real()和imag()成员函数)获取实部和虚部来计算的,未将其设为友元。
2-3:什么时候才考虑使用 friend?总结你的思考。
当函数需要直接访问类的私有成员,且无法通过类的公有接口间接实现时;或者两个类需要互相访问对方的私有成员时,才考虑使用friend。
问题3:
如果构造对象时禁用=形式,即遇到Complex c4 = c2;编译报错,类Complex的设计应如何调整?
将复制构造函数声明为explicit,即explicit Complex(const Complex& other);
任务三:
PlayerControl.h
1 #pragma once 2 #include <string> 3 4 enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown}; 5 6 class PlayerControl { 7 public: 8 PlayerControl(); 9 10 ControlType parse(const std::string& control_str); // 实现std::string --> ControlType转换 11 void execute(ControlType cmd) const; // 执行控制操作(以打印输出模拟) 12 13 static int get_cnt(); 14 15 private: 16 static int total_cnt; 17 };
PlayerControl.cpp
1 #include "PlayerControl.h" 2 #include <iostream> 3 #include <algorithm> 4 5 int PlayerControl::total_cnt = 0; 6 7 PlayerControl::PlayerControl() {} 8 9 ControlType PlayerControl::parse(const std::string& control_str) { 10 std::string lower_str = control_str; 11 std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(), 12 [](unsigned char c) { return std::tolower(c); }); 13 ControlType result = ControlType::Unknown; 14 15 if (lower_str == "play") { 16 result = ControlType::Play; 17 } else if (lower_str == "pause") { 18 result = ControlType::Pause; 19 } else if (lower_str == "next") { 20 result = ControlType::Next; 21 } else if (lower_str == "prev") { 22 result = ControlType::Prev; 23 } else if (lower_str == "stop") { 24 result = ControlType::Stop; 25 } else { 26 result = ControlType::Unknown; 27 } 28 total_cnt++; 29 return result; 30 } 31 32 void PlayerControl::execute(ControlType cmd) const { 33 switch (cmd) { 34 case ControlType::Play: std::cout << "[play] Playing music...\n"; break; 35 case ControlType::Pause: std::cout << "[Pause] Music paused\n"; break; 36 case ControlType::Next: std::cout << "[Next] Skipping to next track\n"; break; 37 case ControlType::Prev: std::cout << "[Prev] Back to previous track\n"; break; 38 case ControlType::Stop: std::cout << "[Stop] Music stopped\n"; break; 39 default: std::cout << "[Error] unknown control\n"; break; 40 } 41 } 42 43 int PlayerControl::get_cnt() { 44 return total_cnt; 45 }
task3.cpp
1 #include "PlayerControl.h" 2 #include <iostream> 3 4 void test() { 5 PlayerControl controller; 6 std::string control_str; 7 std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n"; 8 9 while(std::cin >> control_str) { 10 if(control_str == "quit") 11 break; 12 13 ControlType cmd = controller.parse(control_str); 14 controller.execute(cmd); 15 std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n"; 16 } 17 } 18 19 int main() { 20 test(); 21 }
运行结果截图:

任务四:
Fraction.h
1 #pragma once 2 #include <string> 3 4 class Fraction { 5 public: 6 Fraction(int up = 0, int down = 1); 7 Fraction(const Fraction& f); 8 9 int get_up() const; 10 int get_down() const; 11 Fraction negative() const; 12 13 static const std::string doc; 14 15 private: 16 int up, down; 17 void simplify(); 18 19 friend void output(const Fraction& f); 20 friend Fraction add(const Fraction& a, const Fraction& b); 21 friend Fraction sub(const Fraction& a, const Fraction& b); 22 friend Fraction mul(const Fraction& a, const Fraction& b); 23 friend Fraction div(const Fraction& a, const Fraction& b); 24 };
1 #include "Fraction.h" 2 #include <iostream> 3 #include <numeric> 4 #include <stdexcept> 5 6 const std::string Fraction::doc = "Fraction类 v0.01版"; 7 8 Fraction::Fraction(int u, int d): up{u}, down{d} { 9 if (down == 0) throw std::invalid_argument("Denominator cannot be zero"); 10 simplify(); 11 } 12 13 Fraction::Fraction(const Fraction& f): up{f.up}, down{f.down} {} 14 15 void Fraction::simplify() { 16 if (down < 0) { down = -down; up = -up; } 17 int g = std::gcd(up, down); 18 if (g != 0) { up /= g; down /= g; } 19 } 20 21 int Fraction::get_up() const { return up; } 22 int Fraction::get_down() const { return down; } 23 24 Fraction Fraction::negative() const { 25 return Fraction(-up, down); 26 } 27 28 void output(const Fraction& f) { 29 std::cout << f.up << "/" << f.down; 30 } 31 32 Fraction add(const Fraction& a, const Fraction& b) { 33 return Fraction(a.up * b.down + b.up * a.down, a.down * b.down); 34 } 35 36 Fraction sub(const Fraction& a, const Fraction& b) { 37 return Fraction(a.up * b.down - b.up * a.down, a.down * b.down); 38 } 39 40 Fraction mul(const Fraction& a, const Fraction& b) { 41 return Fraction(a.up * b.up, a.down * b.down); 42 } 43 44 Fraction div(const Fraction& a, const Fraction& b) { 45 if (b.up == 0) throw std::invalid_argument("Division by zero"); 46 return Fraction(a.up * b.down, a.down * b.up); 47 }
1 #include "Fraction.h" 2 #include <iostream> 3 #include <numeric> 4 #include <stdexcept> 5 6 const std::string Fraction::doc = "Fraction类 v0.01版"; 7 8 Fraction::Fraction(int u, int d): up{u}, down{d} { 9 if (down == 0) throw std::invalid_argument("Denominator cannot be zero"); 10 simplify(); 11 } 12 13 Fraction::Fraction(const Fraction& f): up{f.up}, down{f.down} {} 14 15 void Fraction::simplify() { 16 if (down < 0) { down = -down; up = -up; } 17 int g = std::gcd(up, down); 18 if (g != 0) { up /= g; down /= g; } 19 } 20 21 int Fraction::get_up() const { return up; } 22 int Fraction::get_down() const { return down; } 23 24 Fraction Fraction::negative() const { 25 return Fraction(-up, down); 26 } 27 28 void output(const Fraction& f) { 29 std::cout << f.up << "/" << f.down; 30 } 31 32 Fraction add(const Fraction& a, const Fraction& b) { 33 return Fraction(a.up * b.down + b.up * a.down, a.down * b.down); 34 } 35 36 Fraction sub(const Fraction& a, const Fraction& b) { 37 return Fraction(a.up * b.down - b.up * a.down, a.down * b.down); 38 } 39 40 Fraction mul(const Fraction& a, const Fraction& b) { 41 return Fraction(a.up * b.up, a.down * b.down); 42 } 43 44 Fraction div(const Fraction& a, const Fraction& b) { 45 if (b.up == 0) throw std::invalid_argument("Division by zero"); 46 return Fraction(a.up * b.down, a.down * b.up); 47 }
运行结果截图:

思考与讨论:
分数的输出和计算,output/add/sub/mul/div,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static) 你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。
我选择友元函数,理由是:通过友元函数可直接访问分数类私有成员,实现简洁直观。

浙公网安备 33010602011771号