Problem D: GCD
Time Limit: 1 Sec Memory Limit: 1280 MBSubmit: 194 Solved: 27
[Submit][Status][Web Board]
Description
Input
The first line is an positive integer T . (1<=T<= 10^3) indicates the number of test cases. In the next T lines, there are three positive integer n, m, p (1<= n,m,p<=10^9) at each line.
Output
Sample Input
1
1 2 3
Sample Output
1
HINT
题意简单!!!
斐波那契数列本身性质:

关于斐波那契数列矩阵快速幂基础知识:加法转矩阵快速幂(here)
由通式可得,斐波那契数列是个二阶递推数列,因此,存一个二维矩阵A,使得
Fn+3 =(Fn+2,Fn+1)=(Fn+1,Fn)*A;
有规律可得,A= 1 1
1 0
Fn+4=(Fn+3,Fn+2)=(Fn+1,Fn)*A*A =)=(Fn+1,Fn)*A^2;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define eps 1e-4
const int N=1e6+10,M=1e6+10;
///数组大小
ll MOD;
struct Matrix
{
ll matri[2][2];
Matrix()
{
memset(matri,0,sizeof(matri));
}
void init()
{
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
matri[i][j]=(i==j);
}
Matrix operator + (const Matrix &B)const
{
Matrix C;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
C.matri[i][j]=(matri[i][j]+B.matri[i][j])%MOD;
return C;
}
Matrix operator * (const Matrix &B)const
{
Matrix C;
for(int i=0;i<2;i++)
for(int k=0;k<2;k++)
for(int j=0;j<2;j++)
C.matri[i][j]=(C.matri[i][j]+1LL*matri[i][k]*B.matri[k][j])%MOD;
return C;
}
Matrix operator ^ (const ll &t)const
{
Matrix A=(*this),res;
res.init();
ll p=t;
while(p)
{
if(p&1)res=res*A;
A=A*A;
p>>=1;
}
return res;
}
};
int main()
{
Matrix base; ///初始化矩阵
base.matri[0][0]=1;base.matri[0][1]=1;
base.matri[1][0]=1;base.matri[1][1]=0;
int T;
scanf("%d",&T);
while(T--)
{
int n,m,p;
scanf("%d%d%d",&n,&m,&p);
int x=__gcd(n+2,m+2);
MOD=p;
if(x<=2)
printf("%d\n",1%p);
else
{
Matrix ans=base^(x-2);
printf("%lld\n",(ans.matri[0][0]+ans.matri[0][1])%MOD);
}
}
return 0;
}
浙公网安备 33010602011771号