2025CSP-S模拟赛31 比赛总结
2025CSP-S模拟赛31
| T1 | T2 | T3 | T4 |
|---|---|---|---|
| 0 RE | 0 RE | 0 RE | 0 RE |
总分:0;排名:17/17
比较神秘,没有加 freopen。挂分为 50,40,30,49。均为部分分。
T1 花海
T1 你这个关注到 \(n\times m \le 2\times 10^5\),我们不妨假设 \(n\le m\),则有 \(n\le \sqrt{2\times 10^5}\)。然后,我们考虑一个 \(n^2m\) 的算法,方法很多,随便口糊一个就好啦。
#include <bits/stdc++.h>
#define il inline
using namespace std;
const int bufsz = 1 << 20;
char ibuf[bufsz], *p1 = ibuf, *p2 = ibuf;
#define getchar() (p1 == p2 && (p2 = (p1 = ibuf) + fread(ibuf, 1, bufsz, stdin), p1 == p2) ? EOF : *p1++)
il int read() {
int x = 0; char ch = getchar(); bool t = 0;
while (ch < '0' || ch > '9') {t ^= ch == '-'; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
return t ? -x : x;
}
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
int n, m;
vector<int> a[N], s[N];
il void init() {
for (int i = 0; i <= n + 2; i++) {
for (int j = 0; j <= m + 2; j++) {
a[i].push_back(0);
s[i].push_back(0);
}
}
}
il int getsum(int i, int j, int x, int y) {
return i > x || j > y ? 0 : s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1];
}
int main() {
freopen("flower.in", "r", stdin);
freopen("flower.out", "w", stdout);
n = read(), m = read();
int flag = 0;
if (n > m) swap(n, m), flag = 1;
init();
if (!flag) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
a[i][j] = read();
}
}
} else {
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
a[j][i] = read();
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
}
}
int ans = 0;
for (int i = 1; i <= n; i++) {
for (int x = i + 1; x <= n; x++) {
int mx = -INF;
for (int y = 1; y <= m; y++) {
ans = max(ans, mx + getsum(i, 1, i, y) + getsum(x, 1, x, y) + getsum(i + 1, y, x - 1, y));
mx = max(mx, getsum(i + 1, y, x - 1, y) - getsum(i, 1, i, y - 1) - getsum(x, 1, x, y - 1));
}
}
}
printf("%d\n", ans);
return 0;
}
T2 划分
考虑 dp。
设 \(f_i\) 表示考虑到 \(i\) 的最小划分代价,令 \(s_i\) 为前缀和。显然有转移:
\[f_i=\min_{0\le j <i \and s_i-s_j\le m}\{f_j+\max_{k=j+1}^{i} a_k\}
\]
然后令 \(p\) 表示第一个满足 \(s_j \geq s_i-m\) 的 \(j\),那么式子便化为:
\[f_i=\min_{p \le j < i}\{f_j+\max_{k=j+1}^{i} a_k\}
\]
考虑优化。首先,我们发现这个东西不是很好优化,然后考虑一个比较暴力的优化方式,线段树优化。考虑用线段树维护 \(f_j+\max_{k=j+1}^i a_k\)。其实这个不是很好维护。考试时维护这一坨维护了半天没写出来,赛后又写了会儿,前前后后写了 4h。其实有个更为简单好写的方式去维护,就是把这两项拆开维护,维护一个 \(f\) ,再维护一个 \(\max\),再维护一个加和的最小值。这个就非常好写了。
#include <bits/stdc++.h>
#define il inline
#define int long long
using namespace std;
const int bufsz = 1 << 20;
char ibuf[bufsz], *p1 = ibuf, *p2 = ibuf;
#define getchar() (p1 == p2 && (p2 = (p1 = ibuf) + fread(ibuf, 1, bufsz, stdin), p1 == p2) ? EOF : *p1++)
il int read() {
int x = 0; char ch = getchar(); bool t = 0;
while (ch < '0' || ch > '9') {t ^= ch == '-'; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
return t ? -x : x;
}
const int INF = 0x3f3f3f3f3f3f3f3f;
const int N = 1e5 + 10;
int n, m, a[N], s[N];
int f[N];
int st[N], head, lst[N];
namespace Seg {
struct node {
int l, r, mn, lazy, mnf, mx;
} tree[4 * N];
#define lc p << 1
#define rc p << 1 | 1
il void pushup(int p) {
tree[p].mn = min(tree[lc].mn, tree[rc].mn);
tree[p].mnf = min(tree[lc].mnf, tree[rc].mnf);
}
il void build(int p, int l, int r) {
tree[p].l = l, tree[p].r = r;
if (l == r) return;
int mid = l + r >> 1;
build(lc, l, mid), build(rc, mid + 1, r);
}
il void pushdown(int p) {
if (!tree[p].lazy) return;
tree[lc].lazy = tree[p].lazy;
tree[rc].lazy = tree[p].lazy;
tree[lc].mx = tree[p].lazy;
tree[rc].mx = tree[p].lazy;
tree[lc].mn = tree[lc].mnf + tree[lc].mx;
tree[rc].mn = tree[rc].mnf + tree[rc].mx;
tree[p].lazy = 0;
}
il void update(int p, int l, int r, int v) {
if (l > r) return;
if (tree[p].l == l && tree[p].r == r) {
tree[p].mx = v;
tree[p].mn = tree[p].mnf + tree[p].mx;
tree[p].lazy = v;
return;
}
pushdown(p);
int mid = tree[p].l + tree[p].r >> 1;
if (r <= mid) update(lc, l, r, v);
else if (l > mid) update(rc, l, r, v);
else update(lc, l, mid, v), update(rc, mid + 1, r, v);
pushup(p);
}
il void modify(int p, int x, int v) {
if (tree[p].l == tree[p].r) {
tree[p].mnf = v;
tree[p].mn = tree[p].mnf + tree[p].mx;
return;
}
pushdown(p);
int mid = tree[p].l + tree[p].r >> 1;
if (x <= mid) modify(lc, x, v);
else modify(rc, x, v);
pushup(p);
}
il int query(int p, int l, int r) {
if (tree[p].l == l && tree[p].r == r) return tree[p].mn;
pushdown(p);
int mid = tree[p].l + tree[p].r >> 1;
if (r <= mid) return query(lc, l, r);
else if (l > mid) return query(rc, l, r);
else return min(query(lc, l, mid), query(rc, mid + 1, r));
}
}
signed main() {
freopen("split.in", "r", stdin);
freopen("split.out", "w", stdout);
n = read(), m = read();
for (int i = 1; i <= n; i++) {
a[i] = read();
s[i] = s[i - 1] + a[i];
}
for (int i = 1; i <= n; i++) {
while (head && a[st[head]] < a[i]) head--;
lst[i] = st[head];
st[++head] = i;
}
Seg::build(1, 0, n);
for (int i = 1; i <= n; i++) {
int p = lower_bound(s, s + 1 + n, s[i] - m) - s;
Seg::update(1, lst[i], i - 1, a[i]);
f[i] = Seg::query(1, p, i - 1);
Seg::modify(1, i, f[i]);
}
printf("%lld\n", f[n]);
return 0;
}
T3 落子无悔
考虑把从上往下删反过来变成从下往上合并。
因为一个儿子对他的一个祖先的贡献是永远不会变的,所以考虑将这些点按一定顺序合并到父亲上,然后把合并后的点看作一个新的点,并在合并的过程中统计贡献。
考虑合并的顺序。对于两个点 \(a,b\) 来讲,令 \(s0,s1\) 分别表示 0 和 1 的数量。那么,如果 \(a\) 排在 \(b\) 前更优,则有 \(s1_a\times s0_b \le s1_b \times s0_a\)。
然后把所有点排一下统计贡献即可。根节点要特判。
#include <bits/stdc++.h>
#define il inline
#define int long long
using namespace std;
const int bufsz = 1 << 20;
char ibuf[bufsz], *p1 = ibuf, *p2 = ibuf;
#define getchar() (p1 == p2 && (p2 = (p1 = ibuf) + fread(ibuf, 1, bufsz, stdin), p1 == p2) ? EOF : *p1++)
il int read() {
int x = 0; char ch = getchar(); bool t = 0;
while (ch < '0' || ch > '9') {t ^= ch == '-'; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
return t ? -x : x;
}
const int INF = 0x3f3f3f3f3f3f3f3f;
const int N = 2e5 + 10;
int n, f[N], a[N];
int son[N];
int s0[N], s1[N];
struct node {
int id, s0, s1;
bool operator < (const node & cmp) const {
return s1 * cmp.s0 != cmp.s1 * s0 ? s1 * cmp.s0 < cmp.s1 * s0 : id < cmp.id;
}
};
set<node> st;
int fa[N];
il int getfa(int x) {
return x == fa[x] ? x : fa[x] = getfa(fa[x]);
}
signed main() {
freopen("board.in", "r", stdin);
freopen("board.out", "w", stdout);
n = read();
for (int i = 2; i <= n; i++) {
f[i] = read();
}
for (int i = 1; i <= n; i++) {
a[i] = read();
s0[i] = (a[i] == 0);
s1[i] = (a[i] == 1);
}
for (int i = 2; i <= n; i++) {
st.insert((node){i, s0[i], s1[i]});
}
for (int i = 1; i <= n; i++) {
fa[i] = i;
}
int ans = 0;
while (!st.empty()) {
node t = *(st.begin());
st.erase((node){t.id, t.s0, t.s1});
int x = getfa(f[t.id]);
if (x != 1) st.erase((node){x, s0[x], s1[x]});
ans += s1[x] * t.s0;
s0[x] += t.s0, s1[x] += t.s1;
fa[t.id] = x;
if (x != 1) st.insert((node){x, s0[x], s1[x]});
}
printf("%lld\n", ans);
return 0;
}

浙公网安备 33010602011771号