/*
满足n>=(k+1)*k/2的整数n必定满足 a+(a+1)+...+(a+k-1)<=n<=(a+1)+(a+2)+...+(a+k)
只要在[a,a+k]中减掉一个数字ai,就有n=sum(a,a+k)-ai;且其乘积能达到最大
那么二分先找到a,如果n=sum(a,a+k-1),那么已经是答案了,否则减去那个ai即可
*/
#include<bits/stdc++.h>
#define mod 1000000007
#define ll long long
using namespace std;
ll n,k;
int judge(ll x){
ll tot=(x+x+k-1)*k/2;
if(tot<n) return 1;
return 0;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&n,&k);
if(n<k*(k+1)/2){
puts("-1");
continue;
}
ll ans=1,tot=0,l=1,r=n,mid,a=1;
while(l<=r){
mid=l+r>>1;
if(judge(mid))
a=mid,l=mid+1;
else r=mid-1;
}
tot=(a+a+k-1)*k/2;
if(tot==n){
for(int i=0;i<k;i++)
ans=ans*(i+a)%mod;
}
else {
tot+=a+k;
ll tmp=tot-n;
for(int i=a;i<=a+k;i++)
if(i==tmp) continue;
else ans=ans*(ll)i%mod;
}
printf("%lld\n",ans);
}
return 0;
}