观看Tensorflow案例实战视频课程15 使用VGG模型进行测试
import numpy as np import os import scipy.misc import matplotlib.pyplot as plt import tensorflow as tf
def _conv_layer(input,weights,bias):
conv=tf.nn.conv2d(input,tf.constant(weights),strides=(1,1,1,1),padding='SAME')
return tf.nn.bias_add(conv,bias)
def _pool_layer(input):
return tf.nn.max_pool(input,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
def preprocess(image,mean_pixel):
return image-mean_pixel
def unprocess(image,mean_pixel):
return image+mean_pixel
def imread(path):
return scipy.misc.imread(path).astype(np.float)
def imsave(path,img):
img=np.clip(img,0,255).astype(np.uint8)
scipy.misc.imsave(path,img)
print("Functions for VGG ready")
def net(data_path,input_image):
layers=(
'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3',
'relu3_3','conv3_4','relu3_4','pool3',
'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3',
'relu4_3','conv4_4','relu4_4','pool4',
'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3',
'relu5_3','conv5_4','relu5_4','pool5',
)
data=scipy.io.loadmat(data_path)
mean=data['normalization'][0][0][0]
mean_pixel=np.mean(mean,axis=(0,1))
weights=data['layers'][0]
net={}
current=input_image
for i,name in enumerate(layers):
kind=name[:4]
if kind=='conv':
kernels,bias=weights[i][0][0][0][0]
# matconvnet:weights are [width,height,in_channels,out_channels]
# tensorflow:weights are [height,width,in_channels,out_channels]
kernels=np.transpose(kernels,(1,0,2,3))
bias=bias.reshape(-1)
current=_conv_layer(current,kernels,bias)
elif kind=='relu':
current=tf.nn.relu(current)
elif kind=='pool':
current=_pool_layer(current)
net[name]=current
assert len(net)=len(layers)
return net,mean_pixel,layers
print("Network for VGG ready")
cwd=os.getcwd()
VGG_PATH=cwd+"/data/imagenet-vgg-verydeep-19.mat"
IMG_PATH=cwd+"/data/cat.jpg"
input_image=imread(IMG_PATH)
shape=(1,input_image.shape[0],input_image.shape[1],input_image.shape[2])
with tf.Session() as sess:
image=tf.placeholder('float',shape=shape)
nets,mean_pixel,all_layers=net(VGG_PATH,image)
input_image_pre=np.array([preprocess(input_image,mean_pixel)])
layers=all_layers#For all layers
#layers=('relu2_1','relu3_1','relu4_1')
for i,layer in enumerate(layers):
print("[%d/%d] %s"%(i+1,len(layers),layer))
features=nets[layer].eval(feed_dict={image:input_image_pre})
print("Type of 'features' is ",type(features))
print("Shape of 'features' is %s"%(features.shape,))
#Plot response
if 1:
plt.figure(i+1,figsize=(10,5))
plt.matshow(features[0,:,:,0],cmap=plt.cm.gray,fignum=i+1)
plt.title(""+layer)
plt.colorbar()
plt.show()
浙公网安备 33010602011771号