观看Tensorflow案例实战视频课程09 神经网路模型架构

import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import input_data
mnist=input_data.read_data_sets('data/',one_hot=True)
#NETWORK TOPOLOGIES
n_hidden_1=256
n_hidden_2=128
n_input=784
n_classes=10
#INPUTS AND OUTPUTS
x=tf.placeholder("float",[None,n_input])
y=tf.placeholder("float",[None,n_classes])
#NETWORK PARAMETERS
stddev=0.1
weights={
'w1':tf.Variable(tf.random_normal([n_input,n_hidden_1],stddev=stddev)),
'w2':tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2],stddev=stddev)),
'out':tf.Variable(tf.random_normal([n_hidden_2,n_classes],stddev=stddev))
}
biases={
'b1':tf.Variable(tf.random_normal([n_hidden_1])),
'b2':tf.Variable(tf.random_normal([n_hidden_2])),
'out':tf.Variable(tf.random_normal([n_classes]))
}
print("NETWORK READY")
浙公网安备 33010602011771号