观看Tensorflow案例实战视频课程08 迭代完成逻辑回归模型
#PREDICTION pred=tf.equal(tf.argmax(actv,1),tf.argmax(y,1)) #ACCURACY accr=tf.reduce_mean(tf.cast(pred,"float")) #INITIALIZER init=tf.global_variables_initializer()
sess=tf.InteractiveSession()
arr=np.array([[31,23,4,24,27,34],
[18,3,25,0,6,35],
[28,14,33,22,20,8],
[13,30,21,19,7,9],
[16,1,26,32,2,29],
[17,12,5,11,10,15]])
tf.rank(arr).eval()#维度
tf.shape(arr).eval()#行列
tf.argmax(arr,0).eval()#按列最大值索引
#0->31(arr[0,0])
#3->30(arr[3,1])
#2->33(arr[2,2])
tf.argmax(arr,1).eval()#按行最大值索引
#5->34(arr[0,5])
#5->35(arr[1,5])
#2->33(arr[2,2])
training_epochs=50
batch_size=100
display_step=5
#SESSION
sess=tf.Session()
sess.run(init)
#MINI-BATCH LEARNING
for epoch in range(training_epochs):
avg_cost=0
num_batch=int(mnist.train.num_examples/batch_size)
for i in range(num_batch):
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(optm,feed_dict={x:batch_xs,y:batch_ys})
feeds={x:batch_xs,y:batch_ys}
avg_cost+=sess.run(cost,feed_dict=feeds)/num_batch
#DISPLAY
if epoch % display_step==0:
feeds_train={x:batch_xs,y:batch_ys}
feeds_test={x:mnist.test.images,y:mnist.test.labels}
train_acc=sess.run(accr,feed_dict=feeds_train)
test_acc=sess.run(accr,feed_dict=feeds_test)
print("Epoch:%03d/%03d cost:%.9f train_acc:%.3f test_acc:%.3f"
% (epoch,training_epochs,avg_cost,train_acc,test_acc))
print("DONE")
浙公网安备 33010602011771号