513. 找树左下角的值
详解
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int max_depth = INT_MIN;
void search(TreeNode* node, int depth, int& result){
//前序遍历 中左右
//父节点控制结束
if(node->left == NULL && node->right == NULL){
if(depth > max_depth){
max_depth = depth;
result = node->val;
}
return;
}
if(node->left){
depth++;
search(node->left, depth, result);
depth--;//深度回溯
}
if(node->right){
depth++;
search(node->right, depth, result);
depth--;//深度回溯
}
return;
}
int findBottomLeftValue_recursion(TreeNode* root) {
int result;
search(root, 0, result);
return result;
}
int findBottomLeftValue(TreeNode* root) {
int result;
queue<TreeNode*> queue_1;
if(!root) return 0;
queue_1.push(root);
while(!queue_1.empty()){
int size = queue_1.size();//cout<<size<<endl;
for(int i=0; i< size; i++){
TreeNode* tmp = queue_1.front();
if(i == 0)
result = tmp->val;
queue_1.pop();
if(tmp->left) queue_1.push(tmp->left);
if(tmp->right) queue_1.push(tmp->right);
}
}
return result;
}
};
112. 路径总和
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool search(TreeNode* node, int total, int target){
if(node->left == NULL && node->right == NULL){
if(total == target)
return true;
else
return false;
}
bool left_ok = false;
bool right_ok = false;
if(node->left){
total += node->left->val;
left_ok = search(node->left, total, target);
total -= node->left->val;
}
if(node->right){
total += node->right->val;
right_ok = search(node->right, total, target);
total -= node->right->val;
}
return left_ok || right_ok;
}
bool hasPathSum(TreeNode* root, int targetSum) {
if(!root) return false;
return search(root, root->val, targetSum);
}
};
113. 路径总和 II
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void search(TreeNode* node, vector<int>& path, vector<vector<int>>& result, int total, int target){
if(node->left == NULL && node->right == NULL){
if(total == target){
result.push_back(path);
}
return;
}
if(node->left){
total += node->left->val;
path.push_back(node->left->val);
search(node->left, path, result, total, target);
total -= node->left->val;
path.pop_back();
}
if(node->right){
total += node->right->val;
path.push_back(node->right->val);
search(node->right, path, result, total, target);
total -= node->right->val;
path.pop_back();
}
return;
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
vector<int> path;
vector<vector<int>> result;
if(root){
path.push_back(root->val);
search(root, path, result, root->val, targetSum);
}
return result;
}
};
106. 从中序与后序遍历序列构造二叉树
class Solution {
private:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
if (postorder.size() == 0) return NULL;
// 后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
// 叶子节点
if (postorder.size() == 1) return root;
// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
// postorder 舍弃末尾元素
postorder.resize(postorder.size() - 1);
// 切割后序数组
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
// [0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);
return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};