110. 平衡二叉树
详解
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
// 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
int search(TreeNode* node){
if(node == NULL) return 0;
int left_height = search(node->left);
if(left_height == -1) return -1;
int right_height = search(node->right);
if(right_height == -1) return -1;
return abs(left_height - right_height) > 1 ? -1: 1 + max(left_height, right_height);
}
bool isBalanced(TreeNode* root) {
return search(root) == -1 ? false:true;
}
};
257. 二叉树的所有路径
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void search(TreeNode* node, vector<int>& path, vector<string>& result){
path.push_back(node->val);
if(node->left == NULL && node->right == NULL){
string tmp = "";
for(int i=0; i<path.size(); i++){
tmp += to_string(path[i]);
if(i != path.size() - 1)
tmp += "->";
}
result.push_back(tmp);
return;
}
if(node->left != NULL){
search(node->left, path, result);
path.pop_back();
}
if(node->right != NULL){
search(node->right, path, result);
path.pop_back();
}
return;
}
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
vector<int> path;
if(root == NULL) return result;
search(root, path, result);
return result;
}
};
404. 左叶子之和
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
/*
void search(TreeNode* root, int& result) {
if(root == NULL) return;
if(root->left && root->left->left == NULL && root->left->right == NULL){
result += root->left->val;
}
search(root->left, result);
search(root->right, result);
return ;
}
int sumOfLeftLeaves(TreeNode* root) {
int result = 0;
search(root, result);
return result;
}
*/
int sumOfLeftLeaves(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0;
int leftValue = sumOfLeftLeaves(root->left); // 左
if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况
leftValue = root->left->val;
}
int rightValue = sumOfLeftLeaves(root->right); // 右
int sum = leftValue + rightValue; // 中
return sum;
}
};