102. 二叉树的层序遍历
详解
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
/*
// 没想到用size来固定每轮取的数量,用了个临时队列做中转
vector<vector<int>> result;
queue<TreeNode*> queue_1;
if(root == NULL)
return result;
queue_1.push(root);
while(!queue_1.empty()){
vector<int> tmp;
queue<TreeNode*> queue_2;
while(!queue_1.empty()){
TreeNode* node = queue_1.front();
tmp.push_back(node->val);
if(node->left != NULL) queue_2.push(node->left);
if(node->right != NULL) queue_2.push(node->right);
queue_1.pop();
}
while(!queue_2.empty()){
queue_1.push(queue_2.front());
queue_2.pop();
}
result.push_back(tmp);
}
*/
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size();
vector<int> vec;
// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
};
107. 二叉树的层序遍历 II
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> result;
queue<TreeNode*> queue_1;
if(root != NULL) queue_1.push(root);
while(!queue_1.empty()){
vector<int> tmp;
int size = queue_1.size();
for(int i=0; i< size; i++){
TreeNode* node = queue_1.front();
tmp.push_back(node->val);
if(node->left != NULL) queue_1.push(node->left);
if(node->right != NULL) queue_1.push(node->right);
queue_1.pop();
}
result.push_back(tmp);
}
reverse(result.begin(), result.end());
return result;
}
};
199. 二叉树的右视图
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> result;
queue<TreeNode*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
int tmp;
for(int i=0; i<size; i++){
TreeNode* node = queue_1.front();
tmp = node->val;
queue_1.pop();
if(node->left) queue_1.push(node->left);
if(node->right) queue_1.push(node->right);
}
result.push_back(tmp);
}
return result;
}
};
637. 二叉树的层平均值
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
vector<double> result;
queue<TreeNode*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
double tmp = 0;
for(int i=0; i<size; i++){
TreeNode* node = queue_1.front();
tmp += node->val;
queue_1.pop();
if(node->left) queue_1.push(node->left);
if(node->right) queue_1.push(node->right);
}
result.push_back(tmp/size);
}
return result;
}
};
429. N 叉树的层序遍历
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> children;
Node() {}
Node(int _val) {
val = _val;
}
Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
vector<vector<int>> result;
queue<Node*> queue_1;
if(root) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
vector<int> tmp;
for(int i=0; i<size; i++){
Node* node = queue_1.front();
tmp.push_back(node->val);
queue_1.pop();
for(int j=0; j<node->children.size(); j++){
queue_1.push(node->children[j]);
}
}
result.push_back(tmp);
}
return result;
}
};
515. 在每个树行中找最大值
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> result;
queue<TreeNode*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
int tmp = INT_MIN;//-INT_MAX;
for(int i=0; i<size; i++){
TreeNode* node = queue_1.front();
tmp = max(tmp, node->val);
queue_1.pop();
if(node->left) queue_1.push(node->left);
if(node->right) queue_1.push(node->right);
}
result.push_back(tmp);
}
return result;
}
};
116. 填充每个节点的下一个右侧节点指针
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
Node* pre = NULL;
for(int i=0; i<size; i++){
Node* node = queue_1.front();
node->next = pre;
pre = node;
queue_1.pop();
if(node->right) queue_1.push(node->right);
if(node->left) queue_1.push(node->left);
}
}
return root;
}
};
117. 填充每个节点的下一个右侧节点指针 II
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
Node* pre = NULL;
for(int i=0; i<size; i++){
Node* node = queue_1.front();
node->next = pre;
pre = node;
queue_1.pop();
if(node->right) queue_1.push(node->right);
if(node->left) queue_1.push(node->left);
}
}
return root;
}
};
104. 二叉树的最大深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
int result = 0;
queue<TreeNode*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
for(int i=0; i<size; i++){
TreeNode* node = queue_1.front();
queue_1.pop();
if(node->left) queue_1.push(node->left);
if(node->right) queue_1.push(node->right);
}
result++;
}
return result;
}
};
111. 二叉树的最小深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == NULL) return 0;
int depth = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()) {
int size = que.size();
depth++; // 记录最小深度
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
return depth;
}
}
}
return depth;
}
};
226. 翻转二叉树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
//前序遍历,从顶点开始转换孩子节点
if(root == nullptr)
return root;
swap(root->left, root->right);
invertTree(root->left);
invertTree(root->right);
return root;
}
};
101. 对称二叉树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
//递归按层次比较左右2棵树(left->左孩子 == right->右孩子, left->右孩子 == right->左孩子)
bool compare(TreeNode* left, TreeNode* right){
//NULL 情况,都为NULL或者一个为NULL
if(left == NULL && right == NULL) return true;
else if(left == NULL && right != NULL) return false;
else if(left != NULL && right == NULL) return false;
else if(left->val != right->val) return false;
//节点相同,递归
bool outside = compare(left->left, right->right);
bool inside = compare(left->right, right->left);
bool isSame = outside && inside; // 左子树:中、 右子树:中 (逻辑处理)
return isSame;
}
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
return compare(root->left, root->right);
}
};