528. 按权重随机选择

labuladong 题解

难度中等

给你一个 下标从 0 开始 的正整数数组 w ,其中 w[i] 代表第 i 个下标的权重。

请你实现一个函数 pickIndex ,它可以 随机地 从范围 [0, w.length - 1] 内(含 0 和 w.length - 1)选出并返回一个下标。选取下标 i 的 概率 为 w[i] / sum(w) 。

  • 例如,对于 w = [1, 3],挑选下标 0 的概率为 1 / (1 + 3) = 0.25 (即,25%),而选取下标 1 的概率为 3 / (1 + 3) = 0.75(即,75%)。

 

示例 1:

输入:
["Solution","pickIndex"]
[[[1]],[]]
输出:
[null,0]
解释:
Solution solution = new Solution([1]);
solution.pickIndex(); // 返回 0,因为数组中只有一个元素,所以唯一的选择是返回下标 0。

示例 2:

输入:
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
输出:
[null,1,1,1,1,0]
解释:
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // 返回 1,返回下标 1,返回该下标概率为 3/4 。
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 0,返回下标 0,返回该下标概率为 1/4 。

由于这是一个随机问题,允许多个答案,因此下列输出都可以被认为是正确的:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
诸若此类。

class Solution:

    def __init__(self, w: List[int]):

        self.presum = [0]
        for n in w:
            self.presum.append(self.presum[-1]+n)
    def find(self,nums,target):
        lo = 0
        hi = len(nums) - 1
        while lo <= hi:
            mid = lo + (hi-lo)//2
            if nums[mid] < target:
                lo = mid + 1
            elif nums[mid] > target:
                hi = mid - 1
            else:
                lo = mid +1
        return lo


        
    def pickIndex(self) -> int:
        target = random.randint(0,self.presum[-1]-1)
        return self.find(self.presum,target) -1 
  

# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()

 



class Solution {
public:
    vector<int> presum;
    Solution(vector<int>& w) {
        int n = w.size();
        presum = vector<int>(n+1,0);
        for(int i = 0; i < n;i++) {
            presum[i+1] = presum[i] + w[i];
        }

    }
    int find_left_bound(int target) {
        if (presum.size()==0) return -1;
        int low = 0,high = presum.size();
        while(low < high) {
            int mid = low + (high-low)/2;
            if (presum[mid]<target) {
                low = mid +1;
            } else {
                high = mid;
            }
        }
        return low;
    }
    int pickIndex() {
        //   rand() % (b-a+1)+ a ;    就表示  a~b 之间的一个随机整数     
        int target = (rand()%(presum.back() - 1 + 1)) + 1;//生成闭区间[1,total]范围内的一个随机数  
        cout << target << endl;
        return find_left_bound(target)-1;
    }
};

/**
 * Your Solution object will be instantiated and called as such:
 * Solution* obj = new Solution(w);
 * int param_1 = obj->pickIndex();
 */

 

 

 

 

 

 

 

 

 

 

import math
import random
import bisect

class WeightedRandomSampler:
    def __init__(self, w: list[int]):
        self.n = len(w)
        self.block_size = max(1, int(math.isqrt(self.n)))  # 块大小 = √n
        self.num_blocks = (self.n + self.block_size - 1) // self.block_size
        self.blocks = []  # 存储块信息
        self.total_sum = 0  # 总权重和

        # 初始化分块
        for i in range(self.num_blocks):
            start = i * self.block_size
            end = min((i + 1) * self.block_size, self.n)
            block_weights = w[start:end]  # 块内权重
            
            # 计算块内前缀和及总和
            prefix = []
            block_total = 0
            for weight in block_weights:
                block_total += weight
                prefix.append(block_total)
            
            self.blocks.append({
                'start_index': start,  # 块起始下标
                'weights': block_weights,  # 块内权重数组
                'prefix': prefix,  # 块内前缀和
                'total': block_total  # 块权重总和
            })
            self.total_sum += block_total




    def update(self, index: int, new_value: int) -> None:
        # 定位块和块内偏移
        block_idx = index // self.block_size
        offset = index % self.block_size
        block = self.blocks[block_idx]
        
        # 更新总权重
        old_value = block['weights'][offset]
        delta = new_value - old_value
        self.total_sum += delta
        block['total'] += delta
        block['weights'][offset] = new_value
        
        # 更新块内前缀和(O(√n)时间)
        block['prefix'] = []
        current = 0
        for weight in block['weights']:
            current += weight
            block['prefix'].append(current)



    def pickIndex(self) -> int:
        if self.total_sum <= 0:
            return -1  # 无有效权重
        
        # 生成随机目标值
        target = random.randint(1, self.total_sum)
        current_sum = 0  # 当前累计和
        
        # 遍历块定位目标块(O(√n)时间)
        for block in self.blocks:
            if target <= current_sum + block['total']:
                # 在块内二分查找(O(log √n)时间)
                t = target - current_sum
                idx_in_block = bisect.bisect_left(block['prefix'], t)
                return block['start_index'] + idx_in_block
            current_sum += block['total']
        
        return self.n - 1  # 保底返回

 

posted @ 2022-08-23 22:53  乐乐章  阅读(49)  评论(0)    收藏  举报