class DNN(paddle.nn.Layer):
#DNN层,负责抽取high-order特征
def __init__(self, sparse_feature_number, sparse_feature_dim,
dense_feature_dim, num_field, layer_sizes):
super(DNN, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.num_field = num_field
self.layer_sizes = layer_sizes
#利用FM模型的隐特征向量作为网络权重初始化来获得子网络输出向量
sizes = [sparse_feature_dim * num_field] + self.layer_sizes + [1]
acts = ["relu" for _ in range(len(self.layer_sizes))] + [None]
self._mlp_layers = []
for i in range(len(layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=sizes[i],
out_features=sizes[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(sizes[i]))))
self.add_sublayer('linear_%d' % i, linear)
self._mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
#得到输入层到embedding层该神经元相连的五条线的权重
#前向传播反馈
def forward(self, feat_embeddings):
y_dnn = paddle.reshape(feat_embeddings,
[-1, self.num_field * self.sparse_feature_dim])
for n_layer in self._mlp_layers:
y_dnn = n_layer(y_dnn)
return y_dnn