第十二章 学习笔记

第十二章 块设备I/O和缓冲区管理 学习笔记

一、块设备I//O缓冲区

文件系统使用一系列I/O缓冲区作为块设备的缓存内存。当进程试图读取(dev,blk)标识的磁盘块时,他首先在缓冲区缓存中搜索分配给磁盘块的缓冲区。如果缓冲区中存在并且包含有效数据,那么它只需要从缓冲区中读取数据,而无需再次从磁盘中读取数据块。如果该缓冲区不存在,他会为磁盘块分配一个缓冲区,将数据从磁盘读入到缓冲区,然后从缓冲区读取数据。

当进程写入磁盘块时,他首先会获取一个分配给该块的缓冲区。然后将数据写入缓冲区,将缓冲区标记为脏,以延迟写入,并将起释放到缓冲区缓存中,并将其释放到缓冲区缓存中。

在read_file/write_file中,假设他从内存中的一个专用缓冲区进行读写。假设BUFFER是缓冲区的结构类型,而且getblk(dev,blk)从缓冲区缓存中飞配一个指定给(dev,blk)的缓冲区。定义一个bread函数,他会返回一个包含有效数据的缓冲区:

    BUFFER *bread(dev,blk) // return a buffer containing valid data
    {
    BUFFER *bp =» getblk(dev,blk)} // get a buffer for (dev,blk) if (bp data valid)
    return bp;
    bp->opcode = READ;	// issue READ operation
    start_lo(bp):	// ntart I/O on device
    wait for I/O completion;
    }

从缓冲区读取数据后,进程通过brelse(hp)格缓冲区释放回缓冲区缓存。同理,定义一个 write_block(dev, blk, data)函数:

    write_block(devf blk, data)
    BUFFER *bp = bread(dev,blk);	// read in the disk block first
    write data to bp;
    (synchronous write)? bwrite(bp) : dwrite(bp);
    bwrite(BUFFER *bp)( bp->opcode = WRITE; start_io(bp); 
    wait for I/O completion; 
    brelse(bp); // release bp
    dwrite(BUFFER *bp)( mark bp dirty for delay_write;
    brelse(bp); // release bp

二、Unix I/O缓冲区管理算法

  1. I/O缓冲区:内核中的一系列NBUF缓冲区用作缓冲区缓存。每个缓冲区用一个结构体表示。
  typdef struct buf{
   struct buf *next_free;	//freelist pointer
   struct buf *next_dev;	//dev_list pointer
   int dev,blk;	//assigned disk block;
   int opcode;	//READ|WRITE
   int dirty;	//buffer data modified
   int async;	//ASYNC write flag
   int valid;	//buffer data valid
   int busy;	//buffer is in use
   int wanted;		some process needs this buffer
   struct, semaphore lock=l ;	//buffer locking semaphore; value=L
   struct semaphore iodone=0;	//for process to wait for I/O completion;
   char buf[BLKSIZE];	//block data area
   } BUFFER;
  1. 设备表:每个块设备用一个设备表结构表示。
  2. 缓冲区初始化:当系统启动时,所有I/O缓冲区都在空闲列表中,所有设备列表和T/O队列均为空。
  3. 缓冲区列表:当缓冲区分配给(dev,blk)时,它会被插入设备表的dev_list中。如果缓冲区当前正在使用,则会将其标记为BUSY(繁忙)并从空闲列表中删除。
  4. Unix getblk/brelse算法:

    Unix算法的缺点:
    (1)效率低下:该算法依赖于重试循环,例如,释放缓冲区可能会唤醒两组进程:需要释放的缓冲区的进程,以及只需要空闲缓冲区的进程。由于只有一个进程可以获取释放的缓 冲区,所以,其他所有被唤醒的进程必须重新进入休眠状态。从休眠状态唤醒后,每个被唤 醒的进程必须从头开始重新执行算法,因为所需的缓冲区可能已经存在。这会导致过多的进 程切换。
    (2)缓存效果不可预知:在Unix算法中,每个释放的缓冲区都可被获取'如果缓冲区 由需要空闲缓冲区的进程获取,那么将会重新分配缓冲区,即使有些进程仍然需要当前的缓冲区。
    (3)可能会出现饥饿:Unix算法基于“自由经济”原则,即每个进程都有尝试的机会,但不能保证成功,因此,可能会出现进程饥饿
    (4)该算法使用只适用丁单处理器系统的休眠/唤醒操作

三、新的I/O缓冲区管理算法

  • 信号量的主要优点是:
    (1)计数信号量可用来表示可用资源的数量,例如:空闲缓冲区的数量。
    (2)当多个进程等待一个资源时,信号量上的V操作只会释放一个等待进程,该进程不必重试,因为它保证拥有资源。

四、PV算法

    BUFFER *getb1k(dev,blk):
    while(1){
    (1). P(free);
    //get a free buffer first 
    if (bp in dev_1ist){
    (2). if (bp not BUSY){
    remove bp from freelist;P(bp);
    // lock bp but does not wait
    (3).return bp;
    // bp in cache but BUSY V(free);
    // give up the free buffer
    (4).P(bp);
    // wait in bp queue
    return bp;v
    // bp not in cache,try to create a bp=(dev,blk)
    (5).bp = frist buffer taken out of freelist;P(bp);
    // lock bp,no wait
    (6).if(bp dirty){
    awzite(bp);
    // write bp out ASYNC,no wait
    continue;
    // continue from (1)
    (7).reassign bp to(dev,blk);1/ mark bp data invalid,not dir return bp;-
    // end of while(1);
    brelse(BUFFER *bp),
    {
    (8).iF (bp queue has waiter)( V(bp); return; ]
    (9).if(bp dirty && free queue has waiter){ awrite(bp);zeturn;}(10).enter bp into(tail of) freelist;V(bp);V(free);
    }

证明PV算法正确性:
(1)缓冲区唯一性
(2)无重试循环
(3)无不必要唤醒
(4)缓存效果
(5)无死锁和饥饿

五、编程实例

posted @ 2021-11-21 16:15  金嗷  阅读(14)  评论(0编辑  收藏  举报