一段metric指标的可视化代码
点击查看代码
"""
可视化结果
"""
import matplotlib.pyplot as plt
f=open('/home/yanhua/Desktop/ncc-600_0.0004.txt','r')
data=f.read().splitlines()
f.close()
test=data[1::2]
testdsc=[]
for i in range(len(test)):
testdsc.append(float(test[i][-8:]))
#testdsc.append(float(test[i][13:21]))
# f2 = open('/home/yanhua/Desktop/mse-600_0.0004.txt', 'r')
# data2 = f2.read().splitlines()
# f2.close()
# test2 = data2[1::2]
# testdsc2 = []
# for i in range(len(test2)):
# testdsc2.append(float(test2[i][-8:]))
# #testdsc2.append(float(test2[i][13:21]))
# f3 = open('/home/yanhua/Desktop/gcc-600_0.0004.txt', 'r')
# data3 = f3.read().splitlines()
# f3.close()
# test3 = data3[1::2]
# testdsc3 = []
# for i in range(len(test3)):
# testdsc3.append(float(test3[i][-8:]))
# #testdsc3.append(float(test3[i][13:21]))
train=data[0::2]
traindsc=[]
for i in range(len(train)):
traindsc.append(float(train[i][-8:]))
#traindsc.append(float(train[i][14:22]))
x = [i for i in range(len(testdsc))]
figure = plt.figure(figsize=(20, 8), dpi=80)#figsize-指定figure的宽和高,dpi-指定绘图对象的分辨率
plt.plot(x, testdsc, label='ncc_DSC') #x-索引,testdsc-按索引具有的值,label-线条的标签
plt.plot(x, traindsc, label='train_loss')
# plt.plot(x,testdsc2,label='mse_DSC')
# plt.plot(x, testdsc3, label='gcc_DSC')
plt.xlabel("iterations", fontsize=15) #fontsize-设置标签字体大小
plt.ylabel("DSC", fontsize=15)
plt.legend()
plt.grid()
plt.show()
文件的数据如下图所示
执行此段代码后,如会有如下所示效果