实验2

一、实验任务1

源代码task1

 1 #pragma once
 2 
 3 #include <string>
 4 
 5 // 类T: 声明
 6 class T {
 7 // 对象属性、方法
 8 public:
 9     T(int x = 0, int y = 0);   // 普通构造函数
10     T(const T &t);  // 复制构造函数
11     T(T &&t);       // 移动构造函数
12     ~T();           // 析构函数
13 
14     void adjust(int ratio);      // 按系数成倍调整数据
15     void display() const;           // 以(m1, m2)形式显示T类对象信息
16 
17 private:
18     int m1, m2;
19 
20 // 类属性、方法
21 public:
22     static int get_cnt();          // 显示当前T类对象总数
23 
24 public:
25     static const std::string doc;       // 类T的描述信息
26     static const int max_cnt;           // 类T对象上限
27 
28 private:
29     static int cnt;         // 当前T类对象数目
30 
31 // 类T友元函数声明
32     friend void func();
33 };
34 
35 // 普通函数声明
36 void func();
T.h
 1 #include "T.h"
 2 #include <iostream>
 3 #include <string>
 4 
 5 // 类T实现
 6 
 7 // static成员数据类外初始化
 8 const std::string T::doc{"a simple class sample"};
 9 const int T::max_cnt = 999;
10 int T::cnt = 0;
11 
12 // 类方法
13 int T::get_cnt() {
14    return cnt;
15 }
16 
17 // 对象方法
18 T::T(int x, int y): m1{x}, m2{y} { 
19     ++cnt; 
20     std::cout << "T constructor called.\n";
21 } 
22 
23 T::T(const T &t): m1{t.m1}, m2{t.m2} {
24     ++cnt;
25     std::cout << "T copy constructor called.\n";
26 }
27 
28 T::T(T &&t): m1{t.m1}, m2{t.m2} {
29     ++cnt;
30     std::cout << "T move constructor called.\n";
31 }    
32 
33 T::~T() {
34     --cnt;
35     std::cout << "T destructor called.\n";
36 }           
37 
38 void T::adjust(int ratio) {
39     m1 *= ratio;
40     m2 *= ratio;
41 }    
42 
43 void T::display() const {
44     std::cout << "(" << m1 << ", " << m2 << ")" ;
45 }     
46 
47 // 普通函数实现
48 void func() {
49     T t5(42);
50     t5.m2 = 2049;
51     std::cout << "t5 = "; t5.display(); std::cout << '\n';
52 }
T.cpp
 1 #include "T.h"
 2 #include <iostream>
 3 
 4 void test_T();
 5 
 6 int main() {
 7     std::cout << "test Class T: \n";
 8     test_T();
 9 
10     std::cout << "\ntest friend func: \n";
11     func();
12 }
13 
14 void test_T() {
15     using std::cout;
16     using std::endl;
17 
18     cout << "T info: " << T::doc << endl;
19     cout << "T objects'max count: " << T::max_cnt << endl;
20     cout << "T objects'current count: " << T::get_cnt() << endl << endl;
21 
22     T t1;
23     cout << "t1 = "; t1.display(); cout << endl;
24 
25     T t2(3, 4);
26     cout << "t2 = "; t2.display(); cout << endl;
27 
28     T t3(t2);
29     t3.adjust(2);
30     cout << "t3 = "; t3.display(); cout << endl;
31 
32     T t4(std::move(t2));
33     cout << "t4 = "; t4.display(); cout << endl;
34 
35     cout << "test: T objects'current count: " << T::get_cnt() << endl;
36 }
task1.cpp

运行结果截图

d59fca5d0b3d4317853975e92503e14f

问题1:T.h中,在类T内部,已声明 func 是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行?如果能,回答YES;如果不能,以截图形式提供编译报错信息,说明原因。

29851ba679934019fa5072d2c0a54a1d

 不能。友元函数func需要在类外声明才可以在类外使用。

问题2:T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。

默认构造函数 功能:无参调用。未定义其他构造函数时编译器自动生成空实现;反之不生成。 调用时机:无参创建对象时。

普通构造函数 功能:用给定参数初始化对象。 调用时机:带参数创建对象时。

复制构造函数 功能:用同类对象初始化新对象。 调用时机:用同类对象初始化新对象时。

移动构造函数 功能:用同类右值对象初始化新对象。 调用时机:用右值引用初始化新对象时。

析构函数 功能:释放内存及清理资源。 调用时机:对象生存期结束时自动调用。

问题3:T.cpp中,line13-15,剪切到T.h的末尾,重新编译,程序能否正确编译。如不能,以截图形式给出报错信息,分析原因。

6f76e0ed8d1bb4ad18267030bbb09e5f

 不能。静态成员变量出现了多重定义,导致出错。

 

二、实验任务2

源代码task2 

 1 #pragma once
 2 #include <iostream>
 3 #include <string>
 4 
 5 class Complex {
 6 public:
 7     static constexpr const char* doc = "A Simplified Complex Class";
 8 
 9     Complex(): real_(0.0), imag_(0.0) {};
10     Complex(double real, double imag = 0.0): real_(real), imag_(imag) {};
11     Complex(const Complex& other) = default;
12 
13     double get_real() const;
14     double get_imag() const;
15 
16     void add(const Complex& other);
17     friend bool is_equal(const Complex& c1 , const Complex& c2);
18     friend bool is_not_equal(const Complex& c1 , const Complex& c2);
19     friend Complex add(const Complex& c1, const Complex& c2);
20     friend double abs(const Complex& c);
21     friend void output(const Complex& c);
22 
23 private:
24     double real_;
25     double imag_;
26 };
Complex.h
 1 #include "Complex.h"
 2 #include <cmath>
 3 #include <string>
 4 #include <iostream>
 5 #include <iomanip>
 6 
 7 double Complex::get_real() const {
 8     return real_;
 9 }
10 
11 double Complex::get_imag() const {
12     return imag_;
13 }
14 
15 void Complex::add(const Complex& other) {
16     real_ += other.real_;
17     imag_ += other.imag_;
18 }
19 
20 bool is_equal(const Complex& c1, const Complex& c2) {
21     return (c1.real_ == c2.real_) && (c1.imag_ == c2.imag_);
22 }
23 
24 bool is_not_equal(const Complex& c1, const Complex& c2) {
25     return !is_equal(c1, c2);
26 }
27 
28 Complex add(const Complex& c1, const Complex& c2){
29     return Complex(c1.real_ + c2.real_, c1.imag_ + c2.imag_);
30 }
31 
32 double abs(const Complex& c) {
33     return std::sqrt(c.real_ * c.real_ + c.imag_ * c.imag_);
34 }
35 
36 void output(const Complex& c){
37     if (c.imag_ >= 0)
38     {
39         std::cout << std::setw(2) << c.real_ << " + " << c.imag_ << "i";
40     }
41     else
42     {
43         std::cout << std::setw(2) << c.real_ << " - " << -c.imag_ << "i";
44     }
45 }
Complex.cpp
 1 #include "Complex.h"
 2 #include <iostream>
 3 #include <iomanip>
 4 #include <complex>
 5 
 6 void test_Complex();
 7 void test_std_complex();
 8 
 9 int main() {
10     std::cout << "*******测试1: 自定义类Complex*******\n";
11     test_Complex();
12 
13     std::cout << "\n*******测试2: 标准库模板类complex*******\n";
14     test_std_complex();
15 
16     system("pause");
17 }
18 
19 void test_Complex() {
20     using std::cout;
21     using std::endl;
22     using std::boolalpha;
23 
24     cout << "类成员测试: " << endl;
25     cout << Complex::doc << endl << endl;
26 
27     cout << "Complex对象测试: " << endl;
28     Complex c1;
29     Complex c2(3, -4);
30     Complex c3(c2);
31     Complex c4 = c2;
32     const Complex c5(3.5);
33 
34     cout << "c1 = "; output(c1); cout << endl;
35     cout << "c2 = "; output(c2); cout << endl;
36     cout << "c3 = "; output(c3); cout << endl;
37     cout << "c4 = "; output(c4); cout << endl;
38     cout << "c5.real = " << c5.get_real() 
39          << ", c5.imag = " << c5.get_imag() << endl << endl;
40 
41     cout << "复数运算测试: " << endl;
42     cout << "abs(c2) = " << abs(c2) << endl;
43     c1.add(c2);
44     cout << "c1 += c2, c1 = "; output(c1); cout << endl;
45     cout << boolalpha;
46     cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
47     cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
48     c4 = add(c2, c3);
49     cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl;
50 }
51 
52 void test_std_complex() {
53     using std::cout;
54     using std::endl;
55     using std::boolalpha;
56 
57     cout << "std::complex<double>对象测试: " << endl;
58     std::complex<double> c1;
59     std::complex<double> c2(3, -4);
60     std::complex<double> c3(c2);
61     std::complex<double> c4 = c2;
62     const std::complex<double> c5(3.5);
63 
64     cout << "c1 = " << c1 << endl;
65     cout << "c2 = " << c2 << endl;
66     cout << "c3 = " << c3 << endl;
67     cout << "c4 = " << c4 << endl;
68 
69     cout << "c5.real = " << c5.real() 
70          << ", c5.imag = " << c5.imag() << endl << endl;
71 
72     cout << "复数运算测试: " << endl;
73     cout << "abs(c2) = " << abs(c2) << endl;
74     c1 += c2;
75     cout << "c1 += c2, c1 = " << c1 << endl;
76     cout << boolalpha;
77     cout << "c1 == c2 : " << (c1 == c2)<< endl;
78     cout << "c1 != c2 : " << (c1 != c2) << endl;
79     c4 = c2 + c3;
80     cout << "c4 = c2 + c3, c4 = " << c4 << endl;
81 }
task2.cpp

运行结果截图

8c491367e6a5a5e17e0fde333156d00d

问题1:比较自定义类Complex和标准库模板类complex的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?

标准库模板类 complex 更简洁; 函数和运算函数和运算在本质上是等效的。

问题2-1:自定义 Complex 中,output/abs/add/ 等均设为友元,它们真的需要访问私有数据吗?(回答"是/否"并给出理由)

否;原因是在自定义 Complex 中,output、abs、add 等函数的参数均为 Complex 类的对象,若要使用该对象的私有数据,可借助其成员函数 get_real () 和 get_imag () 来获取,无需直接访问私有数据,直接访问反而会破坏类的封装性与隐藏性。

问题2-2:标准库 std::complex 是否把 abs 设为友元?

标准库 std::complex 没有将 abs 设为友元。

问题2-3:什么时候才考虑使用 friend ? 总结你的思考。

在以下情况可考虑使用 friend:一是使用公有接口会带来较大性能损耗时;二是运算符需要对左右操作数拥有对称的访问权限时。

问题3:如果构造对象时禁用 = 形式,即遇到 Complex c4 = c2; 编译报错,类 Complex 的设计应如何调整?

若要禁止以 “=” 形式构造对象(如 Complex c4 = c2; 编译报错),可对类 Complex 进行如下调整:禁用复制构造函数的隐式拷贝,采用显式拷贝的复制构造函数,例如通过 Complex c4 (c2); 的方式来构造对象。

 

三、实验任务3

源代码task3

 1 #include "PlayerControl.h"
 2 #include <algorithm>
 3 #include <string>
 4 
 5 int PlayerControl::total_cnt = 0;
 6 
 7 PlayerControl::PlayerControl() {}
 8 
 9 ControlType PlayerControl::parse(const std::string& control_str) {
10     // 转小写处理
11     std::string lower_str = control_str;
12     for (char& c : lower_str) {
13         c = tolower(c);
14     }
15 
16     // 匹配命令
17     if (lower_str == "play") {
18         total_cnt++;
19         return ControlType::Play;
20     } else if (lower_str == "pause") {
21         total_cnt++;
22         return ControlType::Pause;
23     } else if (lower_str == "next") {
24         total_cnt++;
25         return ControlType::Next;
26     } else if (lower_str == "prev") {
27         total_cnt++;
28         return ControlType::Prev;
29     } else if (lower_str == "stop") {
30         total_cnt++;
31         return ControlType::Stop;
32     } else {
33         return ControlType::Unknown;
34     }
35 }
36 
37 void PlayerControl::execute(ControlType cmd) const {
38     switch (cmd) {
39         case ControlType::Play:
40             std::cout << "[play] Playing music...\n";
41             break;
42         case ControlType::Pause:
43             std::cout << "[Pause] Music paused\n";
44             break;
45         case ControlType::Next:
46             std::cout << "[Next] Skipping to next track\n";
47             break;
48         case ControlType::Prev:
49             std::cout << "[Prev] Back to previous track\n";
50             break;
51         case ControlType::Stop:
52             std::cout << "[Stop] Music stopped\n";
53             break;
54         default:
55             std::cout << "[Error] unknown control\n";
56             break;
57     }
58 }
59 
60 int PlayerControl::get_cnt() {
61     return total_cnt;
62 }
PlayerControl.cpp
 1 #pragma once
 2 #include <string>
 3 
 4 enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown};
 5 
 6 class PlayerControl {
 7 public:
 8     PlayerControl();
 9 
10     ControlType parse(const std::string& control_str);   // 实现std::string --> ControlType转换
11     void execute(ControlType cmd) const;   // 执行控制操作(以打印输出模拟)       
12 
13     static int get_cnt();
14 
15 private:
16     static int total_cnt;   
17 };
PlayerControl.h
 1 #include "PlayerControl.h"
 2 #include <iostream>
 3 
 4 void test() {
 5     PlayerControl controller;
 6     std::string control_str;
 7     std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";
 8 
 9     while(std::cin >> control_str) {
10         if(control_str == "quit")
11             break;
12         
13         ControlType cmd = controller.parse(control_str);
14         controller.execute(cmd);
15         std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
16     }
17 }
18 
19 int main() {
20     test();
21 }
task3.cpp

选做:控制台输出emoji:添加UTF-8编码代码

运行结果截图

c1bbf7310645c6c463efc9cd5ef30cd3

 

四、实验任务4

源代码task4

 1 #ifndef FRACTION_H
 2 #define FRACTION_H
 3 
 4 #include <string>
 5 
 6 class Fraction {
 7 public:
 8     static const std::string doc;
 9 
10     Fraction(int up = 0);
11     Fraction(int up, int down);
12     Fraction(const Fraction& other);
13 
14     int get_up() const;
15     int get_down() const;
16     Fraction negative() const;
17 
18     friend void output(const Fraction& f);
19     friend Fraction add(const Fraction& f1, const Fraction& f2);
20     friend Fraction sub(const Fraction& f1, const Fraction& f2);
21     friend Fraction mul(const Fraction& f1, const Fraction& f2);
22     friend Fraction div(const Fraction& f1, const Fraction& f2);
23 
24 private:
25     int up;
26     int down;
27     void simplify();
28     int gcd(int a, int b);
29 };
30 
31 #endif
Fraction.h
 1 #include "Fraction.h"
 2 #include <iostream>
 3 #include <cmath>
 4 
 5 const std::string Fraction::doc = "Fraction类 v0.01版. 支持分数的基本运算.";
 6 
 7 Fraction::Fraction(int up) : up(up), down(1) {
 8     simplify();
 9 }
10 
11 Fraction::Fraction(int up, int down) : up(up), down(down) {
12     if (down == 0) {
13         std::cout << "分母不能为0,已设为1" << std::endl;
14         this->down = 1;
15     }
16     simplify();
17 }
18 
19 Fraction::Fraction(const Fraction& other) : up(other.up), down(other.down) {}
20 
21 int Fraction::get_up() const { return up; }
22 int Fraction::get_down() const { return down; }
23 
24 Fraction Fraction::negative() const {
25     return Fraction(-up, down);
26 }
27 
28 int Fraction::gcd(int a, int b) {
29     a = abs(a);
30     b = abs(b);
31     while (b != 0) {
32         int temp = a % b;
33         a = b;
34         b = temp;
35     }
36     return a;
37 }
38 
39 void Fraction::simplify() {
40     if (down < 0) {
41         up = -up;
42         down = -down;
43     }
44     int common = gcd(up, down);
45     if (common != 0) {
46         up /= common;
47         down /= common;
48     }
49 }
50 
51 void output(const Fraction& f) {
52     if (f.down == 1) {
53         std::cout << f.up;
54     } else {
55         std::cout << f.up << "/" << f.down;
56     }
57 }
58 
59 Fraction add(const Fraction& f1, const Fraction& f2) {
60     int new_up = f1.up * f2.down + f2.up * f1.down;
61     int new_down = f1.down * f2.down;
62     return Fraction(new_up, new_down);
63 }
64 
65 Fraction sub(const Fraction& f1, const Fraction& f2) {
66     int new_up = f1.up * f2.down - f2.up * f1.down;
67     int new_down = f1.down * f2.down;
68     return Fraction(new_up, new_down);
69 }
70 
71 Fraction mul(const Fraction& f1, const Fraction& f2) {
72     int new_up = f1.up * f2.up;
73     int new_down = f1.down * f2.down;
74     return Fraction(new_up, new_down);
75 }
76 
77 Fraction div(const Fraction& f1, const Fraction& f2) {
78     if (f2.up == 0) {
79         std::cout << "分母不能为";
80         return Fraction(0, 1);
81     }
82     int new_up = f1.up * f2.down;
83     int new_down = f1.down * f2.up;
84     return Fraction(new_up, new_down);
85 }
Fraction.cpp
 1 #include "Fraction.h"
 2 #include <iostream>
 3 
 4 void test1();
 5 void test2();
 6 
 7 int main() {
 8     std::cout << "测试1: Fraction类基础功能测试\n";
 9     test1();
10 
11     std::cout << "\n测试2: 分母为0测试: \n";
12     test2();
13 }
14 
15 void test1() {
16     using std::cout;
17     using std::endl;   
18 
19     cout << "Fraction类测试: " << endl;
20     cout << Fraction::doc << endl << endl;
21 
22     Fraction f1(5);
23     Fraction f2(3, -4), f3(-18, 12);
24     Fraction f4(f3);
25     cout << "f1 = "; output(f1); cout << endl;
26     cout << "f2 = "; output(f2); cout << endl;
27     cout << "f3 = "; output(f3); cout << endl;
28     cout << "f4 = "; output(f4); cout << endl;
29 
30     const Fraction f5(f4.negative());
31     cout << "f5 = "; output(f5); cout << endl;
32     cout << "f5.get_up() = " << f5.get_up() 
33         << ", f5.get_down() = " << f5.get_down() << endl;
34 
35     cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl;
36     cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl;
37     cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl;
38     cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl;
39     cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl;
40 }
41 
42 void test2() {
43     using std::cout;
44     using std::endl;
45 
46     Fraction f6(42, 55), f7(0, 3);
47     cout << "f6 = "; output(f6); cout << endl;
48     cout << "f7 = "; output(f7); cout << endl;
49     cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl;
50 }
task4.cpp

运行结果截图

e98003a535f888641c9d9f1f473a6066

问题:分数的输出和计算,output/add/sub/mul/div,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static)你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。

选择的是 命名空间 + 自由函数

做出这一选择的原因是:采用友元方案会对类的封装性和隐藏性造成破坏;静态成员函数方案会导致类内部包含过多函数方法,不利于后续的扩展与维护;而命名空间方案不仅扩展性和维护性较好,还更便于团队协作。

 

实验总结:

对于项目的创建、编译以及运行流程,我的操作更加熟练了。

posted @ 2025-10-24 00:16  htsjubbymjeymsy  阅读(7)  评论(0)    收藏  举报