lucene3.6.0的文档评估机制
lucene的评分机制:所有hits的分数<=1.0
每个document(d)的分数:
∑tf(t in d)*idf(t)*boost(t.field in d)*lengthNorm(t.field in d)
t In q
查询的得分:
score(q,d)=coord(q,d)·queryNorm(q)·∑tf(t in d)*idf(t)*boost(t.field in d)*lengthNorm(t.field in d)
t In q
tf(t in d):文档中d出现搜索项t的频率
idf(t):搜索项t在倒排文档中出现的频率
boost(t.field in d):域的加权因子,在插入文档中设置
lengthNorm(t.field in d):域的标准化值,即在某一域中所有项的个数。通常在索引时计算该值并存储到索引文件中。
coord(q,d):协调因子(normalization value),该因子的值基于文档中包含查询项的个数
queryNorm(q):每个查询的标准化值,指每个查询项的权重的平方和
query对象的加权因子,查询时如果是多个子句,则可以通过加权某一个查询子句来加权某一个query对象。
DefaultSimilarity.java默认处理计分规则/** Expert: Default scoring implementation. */
public class DefaultSimilarity extends Similarity {
/** Implemented as
* <code>state.getBoost()*lengthNorm(numTerms)</code>, where
* <code>numTerms</code> is {@link FieldInvertState#getLength()} if {@link
* #setDiscountOverlaps} is false, else it's {@link
* FieldInvertState#getLength()} - {@link
* FieldInvertState#getNumOverlap()}.
*
* @lucene.experimental */
@Override
public float computeNorm(String field, FieldInvertState state) {
final int numTerms;
if (discountOverlaps)
numTerms = state.getLength() - state.getNumOverlap();
else
numTerms = state.getLength();
return state.getBoost() * ((float) (1.0 / Math.sqrt(numTerms)));
}
/** Implemented as <code>1/sqrt(sumOfSquaredWeights)</code>. */
@Override
public float queryNorm(float sumOfSquaredWeights) {
return (float)(1.0 / Math.sqrt(sumOfSquaredWeights));
}
/** Implemented as <code>sqrt(freq)</code>. */
@Override
public float tf(float freq) {
return (float)Math.sqrt(freq);
}
/** Implemented as <code>1 / (distance + 1)</code>. */
@Override
public float sloppyFreq(int distance) {
return 1.0f / (distance + 1);
}
/** Implemented as <code>log(numDocs/(docFreq+1)) + 1</code>. */
@Override
public float idf(int docFreq, int numDocs) {
return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);
}
/** Implemented as <code>overlap / maxOverlap</code>. */
@Override
public float coord(int overlap, int maxOverlap) {
return overlap / (float)maxOverlap;
}
// Default true
protected boolean discountOverlaps = true;
/** Determines whether overlap tokens (Tokens with
* 0 position increment) are ignored when computing
* norm. By default this is true, meaning overlap
* tokens do not count when computing norms.
*
* @lucene.experimental
*
* @see #computeNorm
*/
public void setDiscountOverlaps(boolean v) {
discountOverlaps = v;
}
/** @see #setDiscountOverlaps */
public boolean getDiscountOverlaps() {
return discountOverlaps;
}
}
IndexSearcher.java的explain方法返回的Explanation对象包含了所有评分因子中各个因子的详细信息。
测试程序和数据参考http://zhwj184.iteye.com/admin/blogs/1522709
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;
public class DocSearch {
private static IndexSearcher isearcher = null;
public static void search(String key) throws IOException, ParseException{
Directory directory = FSDirectory.open(new File("E:\\output\\lucence\\index"));
// Now search the index:
IndexReader ireader = IndexReader.open(directory); // read-only=true
isearcher = new IndexSearcher(ireader);
// Parse a simple query that searches for "text":
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);
QueryParser parser = new QueryParser(Version.LUCENE_CURRENT,"context", analyzer);
Query query = parser.parse(key);
ScoreDoc[] hits = isearcher.search(query, null, 1000).scoreDocs;
// Iterate through the results:
for (int i = 0; i < hits.length; i++) {
Document hitDoc = isearcher.doc(hits[i].doc);
System.out.println(hitDoc.getValues("id")[0] + "\t" + hitDoc.getValues("context")[0] + "\t" + hits[i].score);
Explanation explan = isearcher.explain(query, hits[i].doc);
System.out.println(explan);
}
}
public static void main(String[] args) throws IOException, ParseException {
search("旧水泥袋");
isearcher.close();
}
}
输出结果:
只截取第一篇文档的评分信息
4801857 采购旧编织袋、旧水泥袋 4.0172114
4.0172114 = (MATCH) sum of:
1.4140004 = (MATCH) weight(context:旧 in 1682), product of:
0.54585564 = queryWeight(context:旧), product of:
5.861472 = idf(docFreq=13, maxDocs=1809)
0.09312603 = queryNorm
2.5904293 = (MATCH) fieldWeight(context:旧 in 1682), product of:
1.4142135 = tf(termFreq(context:旧)=2)
5.861472 = idf(docFreq=13, maxDocs=1809)
0.3125 = fieldNorm(field=context, doc=1682)
0.60229266 = (MATCH) weight(context:水 in 1682), product of:
0.42365694 = queryWeight(context:水), product of:
4.549286 = idf(docFreq=51, maxDocs=1809)
0.09312603 = queryNorm
1.4216518 = (MATCH) fieldWeight(context:水 in 1682), product of:
1.0 = tf(termFreq(context:水)=1)
4.549286 = idf(docFreq=51, maxDocs=1809)
0.3125 = fieldNorm(field=context, doc=1682)
1.1562659 = (MATCH) weight(context:泥 in 1682), product of:
0.58700174 = queryWeight(context:泥), product of:
6.3033047 = idf(docFreq=8, maxDocs=1809)
0.09312603 = queryNorm
1.9697827 = (MATCH) fieldWeight(context:泥 in 1682), product of:
1.0 = tf(termFreq(context:泥)=1)
6.3033047 = idf(docFreq=8, maxDocs=1809)
0.3125 = fieldNorm(field=context, doc=1682)
0.84465253 = (MATCH) weight(context:袋 in 1682), product of:
0.42188305 = queryWeight(context:袋), product of:
4.5302377 = idf(docFreq=52, maxDocs=1809)
0.09312603 = queryNorm
2.0021012 = (MATCH) fieldWeight(context:袋 in 1682), product of:
1.4142135 = tf(termFreq(context:袋)=2)
4.5302377 = idf(docFreq=52, maxDocs=1809)
0.3125 = fieldNorm(field=context, doc=1682)
浙公网安备 33010602011771号