怪奇物语

怪奇物语

首页 新随笔 联系 管理

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/06检测多个.py

# 导入cv模块
import cv2 as cv


# 检测函数
def face_detect_demo():
    gary = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    face_detect = cv.CascadeClassifier('venv/lib/python3.9/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    face = face_detect.detectMultiScale(gary)

    for x, y, w, h in face:
        cv.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)
    cv.imshow('result', img)


# 读取图像
img = cv.imread('opencv/face2.jpg', cv.IMREAD_UNCHANGED)

# 检测函数
face_detect_demo()

# 等待
while True:
    if ord('q') == cv.waitKey(0):
        break
# 释放内存
cv.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/08拍照保存.py

# 导入模块
import cv2
# 摄像头
cap = cv2.VideoCapture(0)

falg = 1
num = 1

while (cap.isOpened()):  # 检测是否在开启状态
    ret_flag, Vshow = cap.read()  # 得到每帧图像
    cv2.imshow("Capture_Test", Vshow)  # 显示图像
    k = cv2.waitKey(1) & 0xFF  # 按键判断

    if k == ord('s'):  # 保存
        cv2.imwrite("D:mycodetest/opencv/data/jm/"+str(num)+".123"+".jpg", Vshow)
        print("success to save"+str(num)+".jpg")
        print("-------------------")
        num += 1
    elif k == ord(' '):  # 退出
        break
# 释放摄像头
cap.release()
# 释放内存
cv2.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/02灰度转换.py

# 导入cv模块
import cv2 as cv

# 读取图片
img = cv.imread('opencv/face1.jpg', cv.IMREAD_UNCHANGED)

# 灰度转换
gray_img = cv.cvtColor(img, cv.COLOR_BAYER_BG2BGR)

# 显示灰度图片
cv.imshow('gray', gray_img)

# 保存灰度图片
# cv.imwrite('gray_face1.jpg',gray_img)
# 显示图片
# cv.imshow('read_img', img)
# 等待
cv.waitKey(0)
# 释放内存
cv.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/03修改尺寸.py

# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread('opencv/face1.jpg', cv.IMREAD_UNCHANGED)


# 修改尺寸
resize_img = cv.resize(img, dsize=(200, 200))
# 显示原图
cv.imshow('img', img)
# 显示修改后的
cv.imshow('resize_img', resize_img)
# 打印原图尺寸大小
print('未修改:', img.shape)
# 打印修改后的大小
print('修改后:', resize_img.shape)

# 等待
while True:
    if ord('q') == cv.waitKey(0):
        break
# 释放内存
cv.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/05人脸检测.py

# 导入cv模块
import cv2 as cv


# 检测函数
def face_detect_demo():
    gary = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    face_detect = cv.CascadeClassifier('venv/lib/python3.9/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')

    # 100x100 到300x300的大小的人脸
    face = face_detect.detectMultiScale(gary, 1.01, 5, 0, (100, 100), (300, 300))

    # 将人脸部分框起来
    for x, y, w, h in face:
        cv.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)
    cv.imshow('result', img)


# 读取图像
img = cv.imread('opencv/face1.jpg', cv.IMREAD_UNCHANGED)

# 检测函数
face_detect_demo()
# 等待
while True:
    if ord('q') == cv.waitKey(0):
        break
# 释放内存
cv.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/09训练数据.py

import os
import cv2
import sys
from PIL import Image
import numpy as np


def getImageAndLabels(path):
    facesSamples = []
    ids = []
    imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
    # 检测人脸
    face_detector = cv2.CascadeClassifier('venv/lib/python3.9/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    # 打印数组imagePaths
    print('数据排列:', imagePaths)
    # 遍历列表中的图片
    for imagePath in imagePaths:
        # 打开图片,黑白化
        PIL_img = Image.open(imagePath).convert('L')
        # 将图像转换为数组,以黑白深浅
       # PIL_img = cv2.resize(PIL_img, dsize=(400, 400))
        img_numpy = np.array(PIL_img, 'uint8')
        # 获取图片人脸特征
        faces = face_detector.detectMultiScale(img_numpy)
        # 获取每张图片的id和姓名
        id = int(os.path.split(imagePath)[1].split('.')[0])

        # 将脸部特征数据和身份信息推入数组之中,存放起来
        for x, y, w, h in faces:
            ids.append(id)
            facesSamples.append(img_numpy[y:y+h, x:x+w])
    return facesSamples, ids


if __name__ == '__main__':
    # 图片路径
    path = 'opencv/data/jm/'
    # 获取图像数组和id标签数组和姓名
    faces, ids = getImageAndLabels(path)

    # 获取训练对象,对于提取出来的脸部特征进行训练
    recognizer = cv2.face.LBPHFaceRecognizer_create()
    recognizer.train(faces, np.array(ids))
    # 保存文件
    recognizer.write('opencv/trainer/trainer.xml')

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/01读取图片.py

# 导入cv模块
import cv2 as cv

# 读取图片

# 绝对路径
# img = cv.imread('/Users/song/codelearn/opencv_face_recognition_learn/Dorian与Ai_人脸识别程序/opencv/face1.jpg')

# 相对路径
img = cv.imread('opencv/face1.jpg', cv.IMREAD_UNCHANGED)

# 显示图片
cv.imshow('read_img', img)

# 等待
cv.waitKey(0)

# 释放内存
cv.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/04绘制矩形.py

# 导入cv模块
import cv2 as cv
# 读取图片

img = cv.imread('opencv/face1.jpg', cv.IMREAD_UNCHANGED)

# 坐标
x, y, w, h = 100, 100, 100, 100
# 绘制矩形
cv.rectangle(img, (x, y, x+w, y+h), color=(0, 0, 255), thickness=1)
# 绘制圆形
cv.circle(img, center=(x+w, y+h), radius=100, color=(255, 0, 0), thickness=5)
# 显示

cv.imshow('re_img', img)
while True:
    if ord('q') == cv.waitKey(0):
        break
# 释放内存
cv.destroyAllWindows()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/07视频检测.py

# 导入cv模块
import cv2 as cv

# 检测函数


def face_detect_demo(img):
    gary = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

    face_detect = cv.CascadeClassifier('venv/lib/python3.9/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    face = face_detect.detectMultiScale(gary)
    for x, y, w, h in face:
        cv.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)
    cv.imshow('result', img)


# 读取摄像头
cap = cv.VideoCapture(0)

# 循环
while True:
    flag, frame = cap.read()
    if not flag:
        break
    face_detect_demo(frame)
    if ord('q') == cv.waitKey(1):
        break
# 释放内存
cv.destroyAllWindows()
# 释放摄像头
cap.release()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/10人脸识别.py

import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib

# 加载训练数据集文件
# recogizer = cv2.face.LBPHFaceRecognizer_create()
# recogizer.read('opencv/trainer/trainer.yml')
# print(recogizer)

# names = []
# warningtime = 0


# def face_detect_demo(img):
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换为灰度

# 读取图片
img = cv2.imread('opencv/face1.jpg', cv2.IMREAD_UNCHANGED)

# 灰度转换
gray_img = cv2.cvtColor(img, cv2.COLOR_BAYER_BG2BGR)


face_detector = cv2.CascadeClassifier('/Users/song/codelearn/opencv_face_recognition_learn/Dorian与Ai_人脸识别程序/opencv/trainer/trainer.yml')

face = face_detector.detectMultiScale(gray_img, 1.01, 5, 0, (100, 100), (300, 300))


# face = face_detector.detectMultiScale(gray_img, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (100, 100), (300, 300))


for x, y, w, h in face:
    cv2.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)
    cv2.circle(img, center=(x+w//2, y+h//2), radius=w//2, color=(0, 255, 0), thickness=1)

# 人脸识别
# ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
# # print('标签id:',ids,'置信评分:', confidence)
# if confidence > 80:
#     global warningtime
#     warningtime += 1
#     if warningtime > 100:
#         warning()
#         warningtime = 0
#     cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
# else:
#     cv2.putText(img, str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
cv2.imshow('result', img)


# def name():
#     path = 'opencv/data/jm/'
#     imagePaths = [os.path.join(path, f) for f in os.listdir(path)]

#     for imagePath in imagePaths:
#         name = str(os.path.split(imagePath)[1].split('.', 2)[1])
#         names.append(name)


# cap = cv2.VideoCapture('opencv/1.mp4', cv2.IMREAD_UNCHANGED)
# name()

# while True:
#     while cap.isOpened():
#         flag, frame = cap.read()
#         if not flag:
#             break
#         face_detect_demo(frame)
#         if ord(' ') == cv2.waitKey(10):
#             break
# cv2.destroyAllWindows()
# cap.release()

# 等待
cv2.waitKey(0)
# 释放内存
cv2.destroyAllWindows()

img.release()

/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/11网页视频.py

import cv2


def face_detect_demo(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换为灰度

    # cv2.imshow('result', gray)

    # cv2.waitKey(3000)

    # recogizer = cv2.face.LBPHFaceRecognizer_create()
    # res = recogizer.read('./trainer/trainer.yml')

    # face_detector = cv2.CascadeClassifier('/Users/song/codelearn/opencv_face_recognition_learn/Dorian与Ai_人脸识别程序/opencv/trainer/trainer.yml')

    face_detector = cv2.CascadeClassifier('venv/lib/python3.9/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    # face_detector = cv2.CascadeClassifier('trainer/trainer.xml')
    # face = face_detector.detectMultiScale(gray, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (100, 100), (300, 300))

    face = face_detector.detectMultiScale(gray, 1.01, 5, 0, (100, 100), (300, 300))

    # face = face_detector.detectMultiScale(gray)

    for x, y, w, h in face:
        cv2.rectangle(img, (x, y), (x+w, y+h), color=(0, 0, 255), thickness=2)
        cv2.circle(img, center=(x+w//2, y+h//2), radius=w//2, color=(0, 255, 0), thickness=1)

    # 人脸识别
    # ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
    # # print('标签id:',ids,'置信评分:', confidence)
    # if confidence > 80:
    #     global warningtime
    #     warningtime += 1
    #     if warningtime > 100:
    #         warning()
    #         warningtime = 0
    #     cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    # else:
    #     cv2.putText(img, str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result', img)


class CaptureVideo(object):
    def net_video(self):
        # 获取网络视频流
        # cam = cv2.VideoCapture("rtmp://192.168.0.10/live/test")
        # cam = cv2.VideoCapture("rtmp://58.200.131.2:1935/livetv/hunantv")
        cam = cv2.VideoCapture("/Users/song/codelearn/opencv_face_recognition_learn/face_dectector/opencv/1.mp4")
        while cam.isOpened():
            sucess, frame = cam.read()
            face_detect_demo(frame)
            cv2.imshow("Network", frame)
            cv2.waitKey(1)


if __name__ == "__main__":
    capture_video = CaptureVideo()
    capture_video.net_video()
posted on 2023-02-18 10:54  超级无敌美少男战士  阅读(112)  评论(0)    收藏  举报