java GC(转载)
【GC分析】Java GC日志查看: https://www.cnblogs.com/qlqwjy/p/7929414.html
图解 JVM GC 过程: https://cloud.tencent.com/developer/article/1336605
JVM优化之 -Xss -Xms -Xmx -Xmn 参数设置: https://blog.csdn.net/yrwan95/article/details/82826519
XmnXmsXmxXss有什么区别
Xmn、Xms、Xmx、Xss都是JVM对内存的配置参数,我们可以根据不同需要区修改这些参数,以达到运行程序的最好效果。
-Xms 堆内存的最小大小,默认为物理内存的1/64
-Xmx 堆内存的最大大小,默认为物理内存的1/4
-Xmn 堆内新生代的大小。通过这个值也可以得到老生代的大小:-Xmx减去-Xmn
-Xss 设置每个线程可使用的内存大小,即栈的大小。在相同物理内存下,减小这个值能生成更多的线程,当然操作系统对一个进程内的线程数还是有限制的,不能无限生成。线程栈的大小是个双刃剑,如果设置过小,可能会出现栈溢出,特别是在该线程内有递归、大的循环时出现溢出的可能性更大,如果该值设置过大,就有影响到创建栈的数量,如果是多线程的应用,就会出现内存溢出的错误。
除了这些配置,JVM还有非常多的配置,常用的如下:
- 堆设置
- -Xms:初始堆大小
- -Xmx:最大堆大小
- -Xmn:新生代大小
- -XX:NewRatio:设置新生代和老年代的比值。如:为3,表示年轻代与老年代比值为1:3
- -XX:SurvivorRatio:新生代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:为3,表示Eden:Survivor=3:2,一个Survivor区占整个新生代的1/5
- -XX:MaxTenuringThreshold:设置转入老年代的存活次数。如果是0,则直接跳过新生代进入老年代
- -XX:PermSize、-XX:MaxPermSize:分别设置永久代最小大小与最大大小(Java8以前)
- -XX:MetaspaceSize、-XX:MaxMetaspaceSize:分别设置元空间最小大小与最大大小(Java8以后)
- 收集器设置
- -XX:+UseSerialGC:设置串行收集器
- -XX:+UseParallelGC:设置并行收集器
- -XX:+UseParalledlOldGC:设置并行老年代收集器
- -XX:+UseConcMarkSweepGC:设置并发收集器
- 垃圾回收统计信息
- -XX:+PrintGC
- -XX:+PrintGCDetails
- -XX:+PrintGCTimeStamps
- -Xloggc:filename
- 并行收集器设置
- -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
- -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
- -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
- 并发收集器设置
- -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
- -XX:ParallelGCThreads=n:设置并发收集器新生代收集方式为并行收集时,使用的CPU数。并行收集线程数。
GC日志查看
GC的日志是以替换的方式(>)写入的,而不是追加(>>),如果下次写入到同一个文件中的话,以前的GC内容会被清空。
对应的参数列表
-XX:+PrintGC 输出GC日志 -XX:+PrintGCDetails 输出GC的详细日志 -XX:+PrintGCTimeStamps 输出GC的时间戳(以基准时间的形式) -XX:+PrintGCDateStamps 输出GC的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800) -XX:+PrintHeapAtGC 在进行GC的前后打印出堆的信息 -Xloggc:../logs/gc.log 日志文件的输出路径
例如:eclipse.ini中配置下面代码启动后会在同一目录下生成gc.log
|
1
2
3
|
-Xloggc:gc.log-XX:+PrintGCTimeStamps-XX:+PrintGCDetails |
这里使用如下的参数来进行日志的打印:
-XX:+PrintGCDateStamps -XX:+PrintGCDetails -Xloggc:./gclogs
对于新生代回收的一行日志,其基本内容如下:
2014-07-18T16:02:17.606+0800: 611.633: [GC 611.633: [DefNew: 843458K->2K(948864K), 0.0059180 secs] 2186589K->1343132K(3057292K), 0.0059490 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
其含义大概如下:
2014-07-18T16:02:17.606+0800(当前时间戳): 611.633(时间戳): [GC(表示Young GC) 611.633: [DefNew(单线程Serial年轻代GC): 843458K(年轻代垃圾回收前的大小)->2K(年轻代回收后的大小)(948864K(年轻代总大小)), 0.0059180 secs(本次回收的时间)] 2186589K(整个堆回收前的大小)->1343132K(整个堆回收后的大小)(3057292K(堆总大小)), 0.0059490 secs(回收时间)] [Times: user=0.00(用户耗时) sys=0.00(系统耗时), real=0.00 secs(实际耗时)]
老年代回收的日志如下:
2014-07-18T16:19:16.794+0800: 1630.821: [GC 1630.821: [DefNew: 1005567K->111679K(1005568K), 0.9152360 secs]1631.736: [Tenured: 2573912K->1340650K(2574068K), 1.8511050 secs] 3122548K->1340650K(3579636K), [Perm : 17882K->17882K(21248K)], 2.7854350 secs] [Times: user=2.57 sys=0.22, real=2.79 secs]
gc日志中的最后貌似是系统运行完成前的快照:
Heap def new generation total 1005568K, used 111158K [0x00000006fae00000, 0x000000073f110000, 0x0000000750350000) eden space 893888K, 12% used [0x00000006fae00000, 0x0000000701710e90, 0x00000007316f0000) from space 111680K, 3% used [0x0000000738400000, 0x000000073877c9b0, 0x000000073f110000) to space 111680K, 0% used [0x00000007316f0000, 0x00000007316f0000, 0x0000000738400000) tenured generation total 2234420K, used 1347671K [0x0000000750350000, 0x00000007d895d000, 0x00000007fae00000) the space 2234420K, 60% used [0x0000000750350000, 0x00000007a2765cb8, 0x00000007a2765e00, 0x00000007d895d000) compacting perm gen total 21248K, used 17994K [0x00000007fae00000, 0x00000007fc2c0000, 0x0000000800000000) the space 21248K, 84% used [0x00000007fae00000, 0x00000007fbf92a50, 0x00000007fbf92c00, 0x00000007fc2c0000) No shared spaces configured.
GC日志的离线分析
可以使用一些离线的工具来对GC日志进行分析,比如sun的gchisto( https://java.net/projects/gchisto),gcviewer( https://github.com/chewiebug/GCViewer ),这些都是开源的工具,用户可以直接通过版本控制工具下载其源码,进行离线分析。
下面就已gcviewer为例,简要分析一下gc日志的离线分析,gcviewer源代码工程是maven结构的,可以直接用maven进行package,这里编译的是1.34版本,本版本的快照已经上传至附件中。
需要说明的是,gcviewer支持多种参数生成的gc日志,直接通过java –jar的方式运行,加载生成的gc日志即可:

------------------------第二种理解-----------------------
首先,给出一个日志输出的例子:
参数设置为:
-XX:+PrintGCDetails -XX:-UseAdaptiveSizePolicy -XX:SurvivorRatio=8 -XX:NewSize=10M -XX:MaxNewSize=10M
参数解释:
-XX:+PrintGCDetails 启用日志
-XX:-UseAdaptiveSizePolicy 禁用动态调整,使SurvivorRatio可以起作用
-XX:SurvivorRatio=8 设置Eden:Survivior=8
-XX:NewSize=10M -XX:MaxNewSize=10M 设置整个新生代的大小为10M
默认垃圾收集器为:Parallel Scavenge
输出结果为:
[GC [PSYoungGen: 4423K->320K(9216K)] 4423K->320K(58880K), 0.0011900 secs] [Times: user=0.01 sys=0.00, real=0.01 secs]
[Full GC (System) [PSYoungGen: 320K->0K(9216K)] [ParOldGen: 0K->222K(49664K)] 320K->222K(58880K) [PSPermGen: 2458K->2456K(21248K)], 0.0073610 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]
Heap
PSYoungGen total 9216K, used 491K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
eden space 8192K, 6% used [0x00000000ff600000,0x00000000ff67af50,0x00000000ffe00000)
from space 1024K, 0% used [0x00000000ffe00000,0x00000000ffe00000,0x00000000fff00000)
to space 1024K, 0% used [0x00000000fff00000,0x00000000fff00000,0x0000000100000000)
ParOldGen total 49664K, used 222K [0x00000000c5800000, 0x00000000c8880000, 0x00000000ff600000)
object space 49664K, 0% used [0x00000000c5800000,0x00000000c58378a0,0x00000000c8880000)
PSPermGen total 21248K, used 2466K [0x00000000c0600000, 0x00000000c1ac0000, 0x00000000c5800000)
object space 21248K, 11% used [0x00000000c0600000,0x00000000c0868b48,0x00000000c1ac0000)
前半段分析:
GC (minor )日志

Full GC 日志

后半段分析:


对照上面的图,GC日志中的PSYoungGen(PS是指Parallel Scavenge)为Eden+FromSpace,而整个YoungGeneration为Eden+FromSpace+ToSpace。
我们设置的新生代大小为10240K,这包括9216K大小的PSYoungGen和1024K大小的ToSpace。其中,PSYoungGen中的Eden:FromSpace为8:1,
这包括8192K的Eden和1024K的FromSpace。
关于老年代和永久代的输出比较简单,不再详述。
更详细描述参见官方文档:http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
最后注意,如果新生代的空间不能刚好按比例划分,则可能有一定的误差。比如,将上述的参数中SurvivorRatio改为10,则输出如下:
[GC [PSYoungGen: 4439K->320K(9408K)] 4439K->320K(59072K), 0.0010120 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (System) [PSYoungGen: 320K->0K(9408K)] [ParOldGen: 0K->222K(49664K)] 320K->222K(59072K) [PSPermGen: 2458K->2456K(21248K)], 0.0095710 secs] [Times: user=0.02 sys=0.00, real=0.00 secs]
Heap
PSYoungGen total 9408K, used 514K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
eden space 8576K, 6% used [0x00000000ff600000,0x00000000ff680b78,0x00000000ffe60000)
from space 832K, 0% used [0x00000000ffe60000,0x00000000ffe60000,0x00000000fff30000)
to space 832K, 0% used [0x00000000fff30000,0x00000000fff30000,0x0000000100000000)
ParOldGen total 49664K, used 222K [0x00000000c5800000, 0x00000000c8880000, 0x00000000ff600000)
object space 49664K, 0% used [0x00000000c5800000,0x00000000c58378a0,0x00000000c8880000)
PSPermGen total 21248K, used 2466K [0x00000000c0600000, 0x00000000c1ac0000, 0x00000000c5800000)
object space 21248K, 11% used [0x00000000c0600000,0x00000000c0868b48,0x00000000c1ac0000)
可以看到新生代的相关数值是有一定误差的
GC日志时间分析: http://www.cnblogs.com/senlinyang/p/8717611.html
1. Minor GC
(1) Minor GC过程
假设现在Heap内存大小为20M,其中年轻代为10M,老年代为10M,年轻代中Eden区6M,From区2M,To区2M,新创建的对象首先往Eden区分配,当再次分配一个对象,假设大小为1M,此时Eden区已经没有足够空间来给这个对象分配内存,如图所示:
这时候触发一次Minor GC,把Eden区的存活对象转移到From区,非存活对象进行清理,然后给新创建的对象分配空间,存入Eden区
随着分配对象的增多,Eden区的空间又不足了:
这时候再触发一次Minor GC,清理掉Eden区和S1区的死亡对象,把存活对象转移到S2区,然后再给新对象分配内存:
From区和To区是相对的关系,哪个区中有对象,哪个区就是From区,比如,再进行一次Minor GC,会把存活对象转移到S1区,再为转移之前,S2区是From区,S1区是To区,转移后,S2区中没有存活对象,变为To区,而S1区变为From区:
2. 对象进入老年代的4种情况
(1) 假如进行Minor GC时发现,存活的对象在ToSpace区中存不下,那么把存活的对象存入老年代
(2) 大对象直接进入老年代
假设新创建的对象很大,比如为5M(这个值可以通过PretenureSizeThreshold这个参数进行设置,默认3M),那么即使Eden区有足够的空间来存放,也不会存放在Eden区,而是直接存入老年代
(3) 长期存活的对象将进入老年代
此外,如果对象在Eden出生并且经过1次Minor GC后仍然存活,并且能被To区容纳,那么将被移动到To区,并且把对象的年龄设置为1,对象没"熬过"一次Minor GC(没有被回收,也没有因为To区没有空间而被移动到老年代中),年龄就增加一岁,当它的年龄增加到一定程度(默认15岁,配置参数-XX:MaxTenuringThreshold),就会被晋升到老年代中
(4) 动态对象年龄判定
还有一种情况,如果在From空间中,相同年龄所有对象的大小总和大于From和To空间总和的一半,那么年龄大于等于该年龄的对象就会被移动到老年代,而不用等到15岁(默认):

4. Full GC
如果某个(些)对象(原来在内存中存活的对象或者新创建的对象)由于以上原因需要被移动到老年代中,而老年代中没有足够空间容纳这个(些)对象,那么会触发一次Full GC,Full GC会对整个Heap进行一次GC,如果Full GC后还有无法给新创建的对象分配内存,或者无法移动那些需要进入老年代中的对象,那么JVM抛出OutOfMemoryError
5. 空间分配担保
在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlerPromotionFailure这个参数设置的值(true或flase)是否允许担保失败(如果这个值为true,代表着JVM说,我允许在这种条件下尝试执行Minor GC,出了事我负责)。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者HandlerPromotionFailure为false,那么这次Minor GC将升级为Full GC
如果老年代最大可用的连续空间大于历次晋升到老年代对象的平均大小,那么在HandlerPromotionFailure为true的情况下,可以尝试进行一次Minor GC,但这是有风险的,如果本次将要晋升到老年代的对象很多,那么Minor GC还是无法执行,此时还得改为Full GC。
HandlerPromotionFailure为true时,如果某次需要转移到老年代中的对象确实很多,老年代无法容纳,那么也会先尝试进行一次Minor GC,Minor GC无法执行时再进行Full GC,这样虽然绕了圈子,但我们还是建议把这个参数设置为true,因为我们要尽量避免Full GC。

浙公网安备 33010602011771号