二叉树

二叉树

1.二叉树理论基础

题目分类

题目分类大纲如下:

二叉树的种类

在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。

满二叉树

满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。

如图所示:

这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。

完全二叉树

什么是完全二叉树?

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。

之前我们刚刚讲过优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。

二叉搜索树

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树

下面这两棵树都是搜索树

平衡二叉搜索树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

如图:

最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。

C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。

所以大家使用自己熟悉的编程语言写算法,一定要知道常用的容器底层都是如何实现的,最基本的就是map、set等等,否则自己写的代码,自己对其性能分析都分析不清楚!

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。

那么链式存储方式就用指针, 顺序存储的方式就是用数组。

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

链式存储如图:

链式存储是大家很熟悉的一种方式,那么我们来看看如何顺序存储呢?

其实就是用数组来存储二叉树,顺序存储的方式如图:

用数组来存储二叉树如何遍历的呢?

如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。

所以大家要了解,用数组依然可以表示二叉树。

二叉树的遍历方式

关于二叉树的遍历方式,要知道二叉树遍历的基本方式都有哪些。

一些同学用做了很多二叉树的题目了,可能知道前中后序遍历,可能知道层序遍历,但是却没有框架。

我这里把二叉树的几种遍历方式列出来,大家就可以一一串起来了。

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。

那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:

  • 深度优先遍历
    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)
  • 广度优先遍历
    • 层次遍历(迭代法)

在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。

这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。

看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式

  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中

大家可以对着如下图,看看自己理解的前后中序有没有问题。

最后再说一说二叉树中深度优先和广度优先遍历实现方式,我们做二叉树相关题目,经常会使用递归的方式来实现深度优先遍历,也就是实现前中后序遍历,使用递归是比较方便的。

之前我们讲栈与队列的时候,就说过栈其实就是递归的一种实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用递归的方式来实现的。

而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。

这里其实我们又了解了栈与队列的一个应用场景了。

二叉树的定义

刚刚我们说过了二叉树有两种存储方式顺序存储,和链式存储,顺序存储就是用数组来存,这个定义没啥可说的,我们来看看链式存储的二叉树节点的定义方式。

public class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;

    TreeNode() {}
    TreeNode(int val) { this.val = val; }
    TreeNode(int val, TreeNode left, TreeNode right) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}

大家会发现二叉树的定义 和链表是差不多的,相对于链表 ,二叉树的节点里多了一个指针, 有两个指针,指向左右孩子。

这里要提醒大家要注意二叉树节点定义的书写方式。

在现场面试的时候 面试官可能要求手写代码,所以数据结构的定义以及简单逻辑的代码一定要锻炼白纸写出来。

因为我们在刷leetcode的时候,节点的定义默认都定义好了,真到面试的时候,需要自己写节点定义的时候,有时候会一脸懵逼!

总结

二叉树是一种基础数据结构,在算法面试中都是常客,也是众多数据结构的基石。

本篇我们介绍了二叉树的种类、存储方式、遍历方式以及定义,比较全面的介绍了二叉树各个方面的重点,帮助大家扫一遍基础。

说到二叉树,就不得不说递归,很多同学对递归都是又熟悉又陌生,递归的代码一般很简短,但每次都是一看就会,一写就废。

2.二叉树的递归遍历

思路

这次我们要好好谈一谈递归,为什么很多同学看递归算法都是“一看就会,一写就废”。

主要是对递归不成体系,没有方法论,每次写递归算法 ,都是靠玄学来写代码,代码能不能编过都靠运气。

本篇将介绍前后中序的递归写法,一些同学可能会感觉很简单,其实不然,我们要通过简单题目把方法论确定下来,有了方法论,后面才能应付复杂的递归。

这里帮助大家确定下来递归算法的三个要素。每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!

  1. 确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
  2. 确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
    3.确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

好了,我们确认了递归的三要素,接下来就来练练手:

以下以前序遍历为例:
1.确定递归函数的参数和返回值:因为要打印出前序遍历节点的数值,所以参数里需要传入vector来放节点的数值,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:
public void preorder(TreeNode root, List<Integer> result)
2.确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:

if (root == null) {
    return;
}

3.确定单层递归的逻辑:前序遍历是中左右的顺序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:

result.add(root.val);
preorder(root.left, result);
preorder(root.right, result);

单层递归的逻辑就是按照中左右的顺序来处理的,这样二叉树的前序遍历,基本就写完了,再看一下完整代码:

// 前序遍历·递归·LC144_二叉树的前序遍历
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<Integer>();
        preorder(root, result);
        return result;
    }

    public void preorder(TreeNode root, List<Integer> result) {
        if (root == null) {
            return;
        }
        result.add(root.val);
        preorder(root.left, result);
        preorder(root.right, result);
    }
}
// 中序遍历·递归·LC94_二叉树的中序遍历
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        inorder(root, res);
        return res;
    }

    void inorder(TreeNode root, List<Integer> list) {
        if (root == null) {
            return;
        }
        inorder(root.left, list);
        list.add(root.val);             // 注意这一句
        inorder(root.right, list);
    }
}
// 后序遍历·递归·LC145_二叉树的后序遍历
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        postorder(root, res);
        return res;
    }

    void postorder(TreeNode root, List<Integer> list) {
        if (root == null) {
            return;
        }
        postorder(root.left, list);
        postorder(root.right, list);
        list.add(root.val);             // 注意这一句
    }
}

此时大家可以做一做leetcode上三道题目,分别是:

可能有同学感觉前后中序遍历的递归太简单了,要打迭代法(非递归),别急,我们明天打迭代法,打个通透!

3.二叉树的迭代遍历(非递归)

看完本篇大家可以使用迭代法,再重新解决如下三道leetcode上的题目:

思路

为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢?

递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。

此时大家应该知道我们用栈也可以是实现二叉树的前后中序遍历了。

前序遍历(迭代法)

我们先看一下前序遍历。

前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。

为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。

如下:

不难写出如下代码: (注意代码中空节点不入栈

// 前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.right != null){
                stack.push(node.right);
            }
            if (node.left != null){
                stack.push(node.left);
            }
        }
        return result;
    }
}

再用迭代法写中序遍历的时候,会发现套路又不一样了,目前的前序遍历的逻辑无法直接应用到中序遍历上。

中序遍历(迭代法)

为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:

  1. 处理:将元素放进result数组中
  2. 访问:遍历节点

分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。

那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的

那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。

如下:

中序遍历,可以写出如下代码:

// 中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()){
           if (cur != null){
               stack.push(cur);
               cur = cur.left;
           }else{
               cur = stack.pop();
               result.add(cur.val);
               cur = cur.right;
           }
        }
        return result;
    }
}

后序遍历(迭代法)

再来看后序遍历,先序遍历是中左右,后序遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:

所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:

// 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode node = stack.pop();
            result.add(node.val);
            if (node.left != null){
                stack.push(node.left);
            }
            if (node.right != null){
                stack.push(node.right);
            }
        }
        Collections.reverse(result);
        return result;
    }
}

总结

此时我们用迭代法写出了二叉树的前后中序遍历,大家可以看出前序和中序是完全两种代码风格,并不像递归写法那样代码稍做调整,就可以实现前后中序。

这是因为前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!

那么问题又来了,难道二叉树前后中序遍历的迭代法实现,就不能风格统一么(即前序遍历改变代码顺序就可以实现中序 和 后序)?

当然可以,这种写法,还不是很好理解,我们将在下一篇文章里重点讲解,敬请期待!

4.二叉树的统一迭代法

思路

我们发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。

其实针对三种遍历方式,使用迭代法是可以写出统一风格的代码!

重头戏来了,接下来介绍一下统一写法。

我们上节提到说使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况

那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。

如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。

迭代法中序遍历

中序遍历代码如下:(详细注释)

class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
    Stack<TreeNode> st = new Stack<>();
    if (root != null) st.push(root);
    while (!st.empty()) {
        TreeNode node = st.peek();
        if (node != null) {
            st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
            st.push(node);                          // 添加中节点
            st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。

            if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
        } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
            st.pop();           // 将空节点弹出
            node = st.peek();    // 重新取出栈中元素
            st.pop();
            result.add(node.val); // 加入到结果集
        }
    }
    return result;
}
}

如下(中序遍历):

result数组就是最终结果集。

可以看出我们将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集。

此时我们再来看前序遍历代码。

迭代法前序遍历

迭代法前序遍历代码如下: (注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}

迭代法后序遍历

后续遍历代码如下: (注意此时我们和中序遍历相比仅仅改变了两行代码的顺序)

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                st.push(node);                          // 中
                st.push(NULL);

                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左

            } else {
                st.pop();
                node = st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

总结

此时我们写出了统一风格的迭代法,不用在纠结于前序写出来了,中序写不出来的情况了。

但是统一风格的迭代法并不好理解,而且想在面试直接写出来还有难度的。

所以大家根据自己的个人喜好,对于二叉树的前中后序遍历,选择一种自己容易理解的递归和迭代法。

5.二叉树的层次遍历

学会二叉树的层序遍历,可以一口气打完以下十题:

102.二叉树的层序遍历

力扣题目链接
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。

思路

层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。

需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。
使用队列实现二叉树广度优先遍历,动画如下:
使用队列实现二叉树广度优先遍历,如下:

这样就实现了层序从左到右遍历二叉树。

代码如下:这份代码也可以作为二叉树层序遍历的模板,打十个就靠它了。

代码

// 102.二叉树的层序遍历
class Solution {
    public List<List<Integer>> resList = new ArrayList<List<Integer>>();

    public List<List<Integer>> levelOrder(TreeNode root) {
        //checkFun01(root,0);
        checkFun02(root);

        return resList;
    }

    //BFS--递归方式
    public void checkFun01(TreeNode node, Integer deep) {
        if (node == null) return;
        deep++;

        if (resList.size() < deep) {
            //当层级增加时,list的Item也增加,利用list的索引值进行层级界定
            List<Integer> item = new ArrayList<Integer>();
            resList.add(item);
        }
        resList.get(deep - 1).add(node.val);

        checkFun01(node.left, deep);
        checkFun01(node.right, deep);
    }

    //BFS--迭代方式--借助队列
    public void checkFun02(TreeNode node) {
        if (node == null) return;
        Queue<TreeNode> que = new LinkedList<TreeNode>();
        que.offer(node);

        while (!que.isEmpty()) {
            List<Integer> itemList = new ArrayList<Integer>();
            int len = que.size();

            while (len > 0) {
                TreeNode tmpNode = que.poll();
                itemList.add(tmpNode.val);

                if (tmpNode.left != null) que.offer(tmpNode.left);
                if (tmpNode.right != null) que.offer(tmpNode.right);
                len--;
            }

            resList.add(itemList);
        }

    }
}

107.二叉树的层次遍历 II

力扣题目链接

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

思路

相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。

// 107. 二叉树的层序遍历 II
public class N0107 {

    /**
     * 解法:队列,迭代。
     * 层序遍历,再翻转数组即可。
     */
    public List<List<Integer>> solution1(TreeNode root) {
        List<List<Integer>> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            List<Integer> levelList = new ArrayList<>();

            int levelSize = que.size();
            for (int i = 0; i < levelSize; i++) {
                TreeNode peek = que.peekFirst();
                levelList.add(que.pollFirst().val);

                if (peek.left != null) {
                    que.offerLast(peek.left);
                }
                if (peek.right != null) {
                    que.offerLast(peek.right);
                }
            }
            list.add(levelList);
        }

        List<List<Integer>> result = new ArrayList<>();
        for (int i = list.size() - 1; i >= 0; i-- ) {
            result.add(list.get(i));
        }

        return result;
    }
}
/**
 * 思路和模板相同, 对收集答案的方式做了优化, 最后不需要反转
 */
class Solution {
    public List<List<Integer>> levelOrderBottom(TreeNode root) {
        // 利用链表可以进行 O(1) 头部插入, 这样最后答案不需要再反转
        LinkedList<List<Integer>> ans = new LinkedList<>();

        Queue<TreeNode> q = new LinkedList<>();

        if (root != null) q.offer(root);

        while (!q.isEmpty()) {
            int size = q.size();

            List<Integer> temp = new ArrayList<>();

            for (int i = 0; i < size; i ++) {
                TreeNode node = q.poll();

                temp.add(node.val);

                if (node.left != null) q.offer(node.left);

                if (node.right != null) q.offer(node.right);
            }

            // 新遍历到的层插到头部, 这样就满足按照层次反序的要求
            ans.addFirst(temp);
        }

        return ans;
    }

199.二叉树的右视图

力扣题目链接
给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

思路

层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。

// 199.二叉树的右视图
public class N0199 {
    /**
     * 解法:队列,迭代。
     * 每次返回每层的最后一个字段即可。
     *
     * 小优化:每层右孩子先入队。代码略。
     */
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            int levelSize = que.size();

            for (int i = 0; i < levelSize; i++) {
                TreeNode poll = que.pollFirst();

                if (poll.left != null) {
                    que.addLast(poll.left);
                }
                if (poll.right != null) {
                    que.addLast(poll.right);
                }

                if (i == levelSize - 1) {
                    list.add(poll.val);
                }
            }
        }

        return list;
    }
}

637.二叉树的层平均值

力扣题目链接

给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。

思路

本题就是层序遍历的时候把一层求个总和再取一个均值。

// 637. 二叉树的层平均值
public class N0637 {

    /**
     * 解法:队列,迭代。
     * 每次返回每层的最后一个字段即可。
     */
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {

            int levelSize = que.size();
            double levelSum = 0.0;
            for (int i = 0; i < levelSize; i++) {
                TreeNode poll = que.pollFirst();

                levelSum += poll.val;

                if (poll.left != null) {
                    que.addLast(poll.left);
                }
                if (poll.right != null) {
                    que.addLast(poll.right);
                }
            }
            list.add(levelSum / levelSize);
        }
        return list;
    }
}

429.N叉树的层序遍历

力扣题目链接
给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。
例如,给定一个 3叉树 :

返回其层序遍历:
[[1],[3,2,4],[5,6]]

思路

这道题依旧是模板题,只不过一个节点有多个孩子了

// 429. N 叉树的层序遍历
public class N0429 {
    /**
     * 解法1:队列,迭代。
     */
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> list = new ArrayList<>();
        Deque<Node> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            int levelSize = que.size();
            List<Integer> levelList = new ArrayList<>();

            for (int i = 0; i < levelSize; i++) {
                Node poll = que.pollFirst();

                levelList.add(poll.val);

                List<Node> children = poll.children;
                if (children == null || children.size() == 0) {
                    continue;
                }
                for (Node child : children) {
                    if (child != null) {
                        que.offerLast(child);
                    }
                }
            }
            list.add(levelList);
        }

        return list;
    }

    class Node {
        public int val;
        public List<Node> children;

        public Node() {}

        public Node(int _val) {
            val = _val;
        }

        public Node(int _val, List<Node> _children) {
            val = _val;
            children = _children;
        }
    }
}

515.在每个树行中找最大值

力扣题目链接
您需要在二叉树的每一行中找到最大的值。

思路

层序遍历,取每一层的最大值

class Solution {
    public List<Integer> largestValues(TreeNode root) {
        if(root == null){
            return Collections.emptyList();
        }
        List<Integer> result = new ArrayList();
        Queue<TreeNode> queue = new LinkedList();
        queue.offer(root);
        while(!queue.isEmpty()){
            int max = Integer.MIN_VALUE;
            for(int i = queue.size(); i > 0; i--){
               TreeNode node = queue.poll();
               max = Math.max(max, node.val);
               if(node.left != null) queue.offer(node.left);
               if(node.right != null) queue.offer(node.right);
            }
            result.add(max);
        }
        return result;
    }
}

116.填充每个节点的下一个右侧节点指针

力扣题目链接
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

思路

本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了

class Solution {
    public Node connect(Node root) {
	Queue<Node> tmpQueue = new LinkedList<Node>();
	if (root != null) tmpQueue.add(root);

	while (tmpQueue.size() != 0){
	    int size = tmpQueue.size();

            Node cur = tmpQueue.poll();
            if (cur.left != null) tmpQueue.add(cur.left);
            if (cur.right != null) tmpQueue.add(cur.right);

	    for (int index = 1; index < size; index++){
		Node next = tmpQueue.poll();
		if (next.left != null) tmpQueue.add(next.left);
		if (next.right != null) tmpQueue.add(next.right);

                cur.next = next;
                cur = next;
	    }
	}

        return root;
    }
}

117.填充每个节点的下一个右侧节点指针II

力扣题目链接

思路

这道题目说是二叉树,但116题目说是完整二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道

// 二叉树之层次遍历
class Solution {
    public Node connect(Node root) {
        Queue<Node> queue = new LinkedList<>();
        if (root != null) {
            queue.add(root);
        }
        while (!queue.isEmpty()) {
            int size = queue.size();
            Node node = null;
            Node nodePre = null;

            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = queue.poll(); // 取出本层头一个节点
                    node = nodePre;
                } else {
                    node = queue.poll();
                    nodePre.next = node; // 本层前一个节点 next 指向当前节点
                    nodePre = nodePre.next;
                }
                if (node.left != null) {
                    queue.add(node.left);
                }
                if (node.right != null) {
                    queue.add(node.right);
                }
            }
            nodePre.next = null; // 本层最后一个节点 next 指向 null
        }
        return root;
    }
}

104.二叉树的最大深度

力扣题目链接
给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

返回它的最大深度 3 。

思路

使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数,和层序遍历的方式极其吻合。

在二叉树中,一层一层的来遍历二叉树,记录一下遍历的层数就是二叉树的深度,如图所示:

所以这道题的迭代法就是一道模板题,可以使用二叉树层序遍历的模板来解决的。

class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null)   return 0;
        Queue<TreeNode> que = new LinkedList<>();
        que.offer(root);
        int depth = 0;
        while (!que.isEmpty())
        {
            int len = que.size();
            while (len > 0)
            {
                TreeNode node = que.poll();
                if (node.left != null)  que.offer(node.left);
                if (node.right != null) que.offer(node.right);
                len--;
            }
            depth++;
        }
        return depth;
    }
}

二叉树的最小深度

力扣题目链接

思路

相对于 104.二叉树的最大深度 ,本题还也可以使用层序遍历的方式来解决,思路是一样的。

需要注意的是,只有当左右孩子都为空的时候,才说明遍历的最低点了。如果其中一个孩子为空则不是最低点

class Solution {
    public int minDepth(TreeNode root){
        if (root == null) {
            return 0;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int depth = 0;
        while (!queue.isEmpty()){
            int size = queue.size();
            depth++;
            TreeNode cur = null;
            for (int i = 0; i < size; i++) {
                cur = queue.poll();
                //如果当前节点的左右孩子都为空,直接返回最小深度
                if (cur.left == null && cur.right == null){
                    return depth;
                }
                if (cur.left != null) queue.offer(cur.left);
                if (cur.right != null) queue.offer(cur.right);
            }
        }
        return depth;
    }
}

总结

二叉树的层序遍历,就是图论中的广度优先搜索在二叉树中的应用,需要借助队列来实现(此时又发现队列的一个应用了)。

6.翻转二叉树

力扣题目链接
翻转一棵二叉树。

题外话

这道题目是非常经典的题目,也是比较简单的题目(至少一看就会)。

但正是因为这道题太简单,一看就会,一些同学都没有抓住起本质,稀里糊涂的就把这道题目过了。

如果做过这道题的同学也建议认真看完,相信一定有所收获!

思路

我们之前介绍的都是各种方式遍历二叉树,这次要翻转了,感觉还是有点懵逼。

这得怎么翻转呢?

如果要从整个树来看,翻转还真的挺复杂,整个树以中间分割线进行翻转,如图:

可以发现想要翻转它,其实就把每一个节点的左右孩子交换一下就可以了。

关键在于遍历顺序,前中后序应该选哪一种遍历顺序? (一些同学这道题都过了,但是不知道自己用的是什么顺序)

遍历的过程中去翻转每一个节点的左右孩子就可以达到整体翻转的效果。

注意只要把每一个节点的左右孩子翻转一下,就可以达到整体翻转的效果

这道题目使用前序遍历和后序遍历都可以,唯独中序遍历不方便,因为中序遍历会把某些节点的左右孩子翻转了两次!建议拿纸画一画,就理解了

那么层序遍历可以不可以呢?依然可以的!只要把每一个节点的左右孩子翻转一下的遍历方式都是可以的!

递归法

我们来看一下递归三部曲:

1.确定递归函数的参数和返回值

参数就是要传入节点的指针,不需要其他参数了,通常此时定下来主要参数,如果在写递归的逻辑中发现还需要其他参数的时候,随时补充。

返回值的话其实也不需要,但是题目中给出的要返回root节点的指针,可以直接使用题目定义好的函数,所以就函数的返回类型为TreeNode。
public TreeNode invertTree(TreeNode root)
2.确定终止条件
当前节点为空的时候,就返回
if (root == NULL) return root;
3.确定单层递归的逻辑
因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。

swapChildren(root);
invertTree(root.left);
invertTree(root.right);

基于这递归三步法,代码基本写完

//DFS递归
class Solution {
   /**
     * 前后序遍历都可以
     * 中序不行,因为先左孩子交换孩子,再根交换孩子(做完后,右孩子已经变成了原来的左孩子),再右孩子交换孩子(此时其实是对原来的左孩子做交换)
     */
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return null;
        }
        invertTree(root.left);
        invertTree(root.right);
        swapChildren(root);
        return root;
    }

    private void swapChildren(TreeNode root) {
        TreeNode tmp = root.left;
        root.left = root.right;
        root.right = tmp;
    }
}

迭代法

广度优先遍历
也就是层序遍历,层数遍历也是可以翻转这棵树的,因为层序遍历也可以把每个节点的左右孩子都翻转一遍,代码如下:

//BFS
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {return null;}
        ArrayDeque<TreeNode> deque = new ArrayDeque<>();
        deque.offer(root);
        while (!deque.isEmpty()) {
            int size = deque.size();
            while (size-- > 0) {
                TreeNode node = deque.poll();
                swap(node);
                if (node.left != null) deque.offer(node.left);
                if (node.right != null) deque.offer(node.right);
            }
        }
        return root;
    }

    public void swap(TreeNode root) {
        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;
    }
}

7.二叉树周末总结

8.对称二叉树

力扣题目链接
给定一个二叉树,检查它是否是镜像对称的。

思路

首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点!

对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。

那么如何比较呢?

比较的是两个子树的里侧和外侧的元素是否相等。如图所示:

那么遍历的顺序应该是什么样的呢?

本题遍历只能是“后序遍历”,因为我们要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等。

正是因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。

但都可以理解算是后序遍历,尽管已经不是严格上在一个树上进行遍历的后序遍历了。

其实后序也可以理解为是一种回溯,当然这是题外话,讲回溯的时候会重点讲的。

那么我们先来看看递归法的代码应该怎么写。

递归法

递归三部曲

1.确定递归函数的参数和返回值
因为我们要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。

返回值自然是bool类型。
代码如下:
private boolean compare(TreeNode left, TreeNode right)

2.确定终止条件

要比较两个节点数值相不相同,首先要把两个节点为空的情况弄清楚!否则后面比较数值的时候就会操作空指针了。
节点为空的情况有:(注意我们比较的其实不是左孩子和右孩子,所以如下我称之为左节点右节点

  • 左节点为空,右节点不为空,不对称,return false
  • 左不为空,右为空,不对称 return false
  • 左右都为空,对称,返回true

此时已经排除掉了节点为空的情况,那么剩下的就是左右节点不为空:

  • 左右都不为空,比较节点数值,不相同就return false

此时左右节点不为空,且数值也不相同的情况我们也处理了。
代码如下

if (left == null && right != null) return false;
if (left != null && right == null) return false;
if (left == null && right == null) return true;
if (left.val != right.val) return false;

注意上面最后一种情况,我没有使用else,而是if, 因为我们把以上情况都排除之后,剩下的就是 左右节点都不为空,且数值相同的情况。

3.确定单层递归的逻辑
此时才进入单层递归的逻辑,单层递归的逻辑就是处理 左右节点都不为空,且数值相同的情况。

  • 比较二叉树外侧是否对称:传入的是左节点的左孩子,右节点的右孩子。
  • 比较内侧是否对称,传入左节点的右孩子,右节点的左孩子。
  • 如果左右都对称就返回true ,有一侧不对称就返回false 。

代码如下:

// 比较外侧
boolean compareOutside = compare(left.left, right.right);
// 比较内侧
boolean compareInside = compare(left.right, right.left);
return compareOutside && compareInside;

如上代码中,我们可以看出使用的遍历方式,左子树左右中,右子树右左中,所以我把这个遍历顺序也称之为“后序遍历”(尽管不是严格的后序遍历)。
最后递归的整体代码如下:

 /**
 * 递归法
 */
public boolean isSymmetric1(TreeNode root) {
    return compare(root.left, root.right);
}

private boolean compare(TreeNode left, TreeNode right) {

    if (left == null && right != null) {
        return false;
    }
    if (left != null && right == null) {
        return false;
    }

    if (left == null && right == null) {
        return true;
    }
    if (left.val != right.val) {
        return false;
    }
    // 比较外侧
    boolean compareOutside = compare(left.left, right.right);
    // 比较内侧
    boolean compareInside = compare(left.right, right.left);
    return compareOutside && compareInside;
}

迭代法

这道题目我们也可以使用迭代法,但要注意,这里的迭代法可不是前中后序的迭代写法,因为本题的本质是判断两个树是否是相互翻转的,其实已经不是所谓二叉树遍历的前中后序的关系了。

这里我们可以使用队列来比较两个树(根节点的左右子树)是否相互翻转,(注意这不是层序遍历)
使用队列
通过队列来判断根节点的左子树和右子树的内侧和外侧是否相等,如下所示

如下的条件判断和递归的逻辑是一样的。

/**
     * 迭代法
     * 使用双端队列,相当于两个栈
     */
    public boolean isSymmetric2(TreeNode root) {
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offerFirst(root.left);
        deque.offerLast(root.right);
        while (!deque.isEmpty()) {
            TreeNode leftNode = deque.pollFirst();
            TreeNode rightNode = deque.pollLast();
            if (leftNode == null && rightNode == null) {
                continue;
            }
//            if (leftNode == null && rightNode != null) {
//                return false;
//            }
//            if (leftNode != null && rightNode == null) {
//                return false;
//            }
//            if (leftNode.val != rightNode.val) {
//                return false;
//            }
            // 以上三个判断条件合并
            if (leftNode == null || rightNode == null || leftNode.val != rightNode.val) {
                return false;
            }
            deque.offerFirst(leftNode.left);
            deque.offerFirst(leftNode.right);
            deque.offerLast(rightNode.right);
            deque.offerLast(rightNode.left);
        }
        return true;
    }
/**
     * 迭代法
     * 使用普通队列
     */
    public boolean isSymmetric3(TreeNode root) {
        Queue<TreeNode> deque = new LinkedList<>();
        deque.offer(root.left);
        deque.offer(root.right);
        while (!deque.isEmpty()) {
            TreeNode leftNode = deque.poll();
            TreeNode rightNode = deque.poll();
            if (leftNode == null && rightNode == null) {
                continue;
            }
//            if (leftNode == null && rightNode != null) {
//                return false;
//            }
//            if (leftNode != null && rightNode == null) {
//                return false;
//            }
//            if (leftNode.val != rightNode.val) {
//                return false;
//            }
            // 以上三个判断条件合并
            if (leftNode == null || rightNode == null || leftNode.val != rightNode.val) {
                return false;
            }
            // 这里顺序与使用Deque不同
            deque.offer(leftNode.left);
            deque.offer(rightNode.right);
            deque.offer(leftNode.right);
            deque.offer(rightNode.left);
        }
        return true;
    }

总结

这次我们又深度剖析了一道二叉树的“简单题”,大家会发现,真正的把题目搞清楚其实并不简单,leetcode上accept了和真正掌握了还是有距离的。

我们介绍了递归法和迭代法,递归依然通过递归三部曲来解决了这道题目,如果只看精简的代码根本看不出来递归三部曲是如何解题的。

在迭代法中我们使用了队列,需要注意的是这不是层序遍历,而且仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。

9.二叉树的最大深度

力扣题目链接
给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例: 给定二叉树 [3,9,20,null,null,15,7],

返回它的最大深度 3 。

思路

看完本篇可以一起做了如下两道题目:

递归法

本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)

根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。

这一点其实是很多同学没有想清楚的,很多题解同样没有讲清楚。

我先用后序遍历(左右中)来计算树的高度。

1.确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回这棵树的深度,所以返回值为int类型。
public int maxDepth(TreeNode root)

2.确定终止条件:如果为空节点的话,就返回0,表示高度为0。
代码如下:
if (node == NULL) return 0;

3.确定单层递归的逻辑:先求它的左子树的深度,再求右子树的深度,最后取左右深度最大的数值 再+1 (加1是因为算上当前中间节点)就是目前节点为根节点的树的深度。
代码如下:

int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
return Math.max(leftDepth, rightDepth) + 1;

所以整体代码如下:

class Solution {
    /**
     * 递归法
     */
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);
        return Math.max(leftDepth, rightDepth) + 1;
    }
}

迭代法

使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数,和层序遍历的方式极其吻合。

在二叉树中,一层一层的来遍历二叉树,记录一下遍历的层数就是二叉树的深度,如图所示:

所以这道题的迭代法就是一道模板题,可以使用二叉树层序遍历的模板来解决的。

class Solution {
    /**
     * 迭代法,使用层序遍历
     */
    public int maxDepth(TreeNode root) {
        if(root == null) {
            return 0;
        }
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode node = deque.poll();
                if (node.left != null) {
                    deque.offer(node.left);
                }
                if (node.right != null) {
                    deque.offer(node.right);
                }
            }
        }
        return depth;
    }
}

相关题目推荐

559.n叉树的最大深度

力扣题目链接

给定一个 n 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

例如,给定一个 3叉树 :

我们应返回其最大深度,3。

思路

依然可以提供递归法和迭代法,来解决这个问题,思路是和二叉树思路一样的,直接给出代码如下:
递归法

class Solution {
    /*递归法,后序遍历求root节点的高度*/
    public int maxDepth(Node root) {
        if (root == null) return 0;

        int depth = 0;
        if (root.children != null){
            for (Node child : root.children){
                depth = Math.max(depth, maxDepth(child));
            }
        }

        return depth + 1; //中节点
    }  
}

迭代法

class Solution {
    /**
     * 迭代法,使用层序遍历
     */
    public int maxDepth(Node root) {
        if (root == null)   return 0;
        int depth = 0;
        Queue<Node> que = new LinkedList<>();
        que.offer(root);
        while (!que.isEmpty())
        {
            depth ++;
            int len = que.size();
            while (len > 0)
            {
                Node node = que.poll();
                for (int i = 0; i < node.children.size(); i++)
                    if (node.children.get(i) != null) 
                        que.offer(node.children.get(i));
                len--;
            }
        }
        return depth;
    }
}

10.二叉树的最小深度

力扣题目链接
给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

返回它的最小深度 2.

思路

本题依然是前序遍历和后序遍历都可以,前序求的是深度,后序求的是高度。

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

那么使用后序遍历,其实求的是根节点到叶子节点的最小距离,就是求高度的过程,不过这个最小距离 也同样是最小深度。

以下讲解中遍历顺序上依然采用后序遍历(因为要比较递归返回之后的结果,本文我也给出前序遍历的写法)。

本题还有一个误区,在处理节点的过程中,最大深度很容易理解,最小深度就不那么好理解,如图:

这就重新审题了,题目中说的是:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点。
什么是叶子节点,左右孩子都为空的节点才是叶子节点!

递归法

来来来,一起递归三部曲:

1.确定递归函数的参数和返回值
参数为要传入的二叉树根节点,返回的是int类型的深度。

代码如下:
public int minDepth(TreeNode root)
2.确定终止条件
终止条件也是遇到空节点返回0,表示当前节点的高度为0。

代码如下:

if (root == null) return 0;

3.确定单层递归的逻辑
这块和求最大深度可就不一样了。

如果左子树为空,右子树不为空,说明最小深度是 1 + 右子树的深度。

反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。 最后如果左右子树都不为空,返回左右子树深度最小值 + 1 。

int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if (root.left == null) {
  return rightDepth + 1;
}
if (root.right == null) {
  return leftDepth + 1;
}
// 左右结点都不为null
return Math.min(leftDepth, rightDepth) + 1;

遍历的顺序为后序(左右中),可以看出:求二叉树的最小深度和求二叉树的最大深度的差别主要在于处理左右孩子不为空的逻辑。
整体递归代码如下:

class Solution {
    /**
     * 递归法,相比求MaxDepth要复杂点
     * 因为最小深度是从根节点到最近**叶子节点**的最短路径上的节点数量
     */
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = minDepth(root.left);
        int rightDepth = minDepth(root.right);
        if (root.left == null) {
            return rightDepth + 1;
        }
        if (root.right == null) {
            return leftDepth + 1;
        }
        // 左右结点都不为null
        return Math.min(leftDepth, rightDepth) + 1;
    }
}

前序遍历的方式:

class Solution {
    /**
     * 递归法(思路来自二叉树最大深度的递归法)
     * 该题求最小深度,最小深度为根节点到叶子节点的深度,所以在迭代到每个叶子节点时更新最小值。
     */
    int depth = 0;
    // 定义最小深度,初始化最大值
    int minDepth = Integer.MAX_VALUE;
    public int minDepth(TreeNode root) {
        dep(root);
        return minDepth == Integer.MAX_VALUE ? 0 : minDepth;
    }
    void dep(TreeNode root){
        if(root == null) return ;
        // 递归开始,深度增加
        depth++;
        dep(root.left);
        dep(root.right);
        // 该位置表示递归到叶子节点了,需要更新最小深度minDepth
        if(root.left == null && root.right == null)
            minDepth = Math.min(minDepth , depth);
        // 递归结束,深度减小
        depth--;
    }
}

迭代法

本题还可以使用层序遍历的方式来解决,思路是一样的。
需要注意的是,只有当左右孩子都为空的时候,才说明遍历到最低点了。如果其中一个孩子不为空则不是最低点
代码如下:(详细注释)

class Solution {
   /**
     * 迭代法,层序遍历
     */
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode poll = deque.poll();
                if (poll.left == null && poll.right == null) {
                    // 是叶子结点,直接返回depth,因为从上往下遍历,所以该值就是最小值
                    return depth;
                }
                if (poll.left != null) {
                    deque.offer(poll.left);
                }
                if (poll.right != null) {
                    deque.offer(poll.right);
                }
            }
        }
        return depth;
    }
}

11.完全二叉树的节点个数

力扣题目链接
给出一个完全二叉树,求出该树的节点个数。
示例 1:

  • 输入:root = [1,2,3,4,5,6]
  • 输出:6

示例 2:

  • 输入:root = []
  • 输出:0

示例 3:

  • 输入:root = [1]
  • 输出:1

提示:
树中节点的数目范围是[0, 5 * 10^4]
0 <= Node.val <= 5 * 10^4
题目数据保证输入的树是 完全二叉树

思路

本篇给出按照普通二叉树的求法以及利用完全二叉树性质的求法。

普通二叉树

首先按照普通二叉树的逻辑来求。
这道题目的递归法和求二叉树的深度写法类似, 而迭代法,5.二叉树的层序遍历遍历模板稍稍修改一下,记录遍历的节点数量就可以了。
递归遍历的顺序依然是后序(左右中)。

递归

1.确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。
代码如下:
int countNodes(TreeNode root)
2.确定终止条件:如果为空节点的话,就返回0,表示节点数为0。
代码如下:
if(root == null) return 0;
3.确定单层递归的逻辑:先求它的左子树的节点数量,再求右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。
代码如下:
return countNodes(root.left) + countNodes(root.right) + 1;
所以整体代码如下:

class Solution {
    // 通用递归解法
    public int countNodes(TreeNode root) {
        if(root == null) {
            return 0;
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(log n),算上了递归系统栈占用的空间
迭代
class Solution {
    // 迭代法
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int result = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size -- > 0) {
                TreeNode cur = queue.poll();
                result++;
                if (cur.left != null) queue.offer(cur.left);
                if (cur.right != null) queue.offer(cur.right);
            }
        }
        return result;
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

完全二叉树

在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。

大家要自己看完全二叉树的定义,很多同学对完全二叉树其实不是真正的懂了。
我来举一个典型的例子如题:

完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^h-1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。
完全二叉树(一)如图:

完全二叉树(二)如图:

可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

这里关键在于如何去判断一个左子树或者右子树是不是满二叉树呢?

在完全二叉树中,如果递归向左遍历的深度等于递归向右遍历的深度,那说明就是满二叉树。如图:

在完全二叉树中,如果递归向左遍历的深度不等于递归向右遍历的深度,则说明不是满二叉树,如图:

那有录友说了,这种情况,递归向左遍历的深度等于递归向右遍历的深度,但也不是满二叉树,如题:

如果这么想,大家就是对 完全二叉树理解有误区了,以上这棵二叉树,它根本就不是一个完全二叉树!

递归代码如下:

class Solution {
    /**
     * 针对完全二叉树的解法
     *
     * 满二叉树的结点数为:2^depth - 1
     */
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        TreeNode left = root.left;
        TreeNode right = root.right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left != null) {  // 求左子树深度
            left = left.left;
            leftDepth++;
        }
        while (right != null) { // 求右子树深度
            right = right.right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}
  • 时间复杂度:O(log n × log n)
  • 空间复杂度:O(log n)

12.平衡二叉树

力扣题目链接
给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

返回 false 。

思路

递归

此时大家应该明白了既然要求比较高度,必然是要后序遍历。

递归三步曲分析:

1.明确递归函数的参数和返回值
参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

代码如下:
private int getHeight(TreeNode root)

2.明确终止条件
递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

代码如下:

if (node == NULL) {
    return 0;
}

3.明确单层递归的逻辑
如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

代码如下:

int leftHeight = getHeight(root.left);
if (leftHeight == -1) {
    return -1;
}
int rightHeight = getHeight(root.right);
if (rightHeight == -1) {
    return -1;
}
// 左右子树高度差大于1,return -1表示已经不是平衡树了
if (Math.abs(leftHeight - rightHeight) > 1) {
    return -1;
}
return Math.max(leftHeight, rightHeight) + 1;

整体代码如下:

class Solution {
   /**
     * 递归法
     */
    public boolean isBalanced(TreeNode root) {
        return getHeight(root) != -1;
    }

    private int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = getHeight(root.left);
        if (leftHeight == -1) {
            return -1;
        }
        int rightHeight = getHeight(root.right);
        if (rightHeight == -1) {
            return -1;
        }
        // 左右子树高度差大于1,return -1表示已经不是平衡树了
        if (Math.abs(leftHeight - rightHeight) > 1) {
            return -1;
        }
        return Math.max(leftHeight, rightHeight) + 1;
    }
}

迭代

在104.二叉树的最大深度 (opens new window)中我们可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。

本题的迭代方式可以先定义一个函数,专门用来求高度。

这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)

然后再用栈来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合。

class Solution {
   /**
     * 迭代法,效率较低,计算高度时会重复遍历
     * 时间复杂度:O(n^2)
     */
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        while (root!= null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            TreeNode inNode = stack.peek();
            // 右结点为null或已经遍历过
            if (inNode.right == null || inNode.right == pre) {
                // 比较左右子树的高度差,输出
                if (Math.abs(getHeight(inNode.left) - getHeight(inNode.right)) > 1) {
                    return false;
                }
                stack.pop();
                pre = inNode;
                root = null;// 当前结点下,没有要遍历的结点了
            } else {
                root = inNode.right;// 右结点还没遍历,遍历右结点
            }
        }
        return true;
    }

    /**
     * 层序遍历,求结点的高度
     */
    public int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode poll = deque.poll();
                if (poll.left != null) {
                    deque.offer(poll.left);
                }
                if (poll.right != null) {
                    deque.offer(poll.right);
                }
            }
        }
        return depth;
    }
}

class Solution {
   /**
     * 优化迭代法,针对暴力迭代法的getHeight方法做优化,利用TreeNode.val来保存当前结点的高度,这样就不会有重复遍历
     * 获取高度算法时间复杂度可以降到O(1),总的时间复杂度降为O(n)。
     * 时间复杂度:O(n)
     */
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            TreeNode inNode = stack.peek();
            // 右结点为null或已经遍历过
            if (inNode.right == null || inNode.right == pre) {
                // 输出
                if (Math.abs(getHeight(inNode.left) - getHeight(inNode.right)) > 1) {
                    return false;
                }
                stack.pop();
                pre = inNode;
                root = null;// 当前结点下,没有要遍历的结点了
            } else {
                root = inNode.right;// 右结点还没遍历,遍历右结点
            }
        }
        return true;
    }

    /**
     * 求结点的高度
     */
    public int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftHeight = root.left != null ? root.left.val : 0;
        int rightHeight = root.right != null ? root.right.val : 0;
        int height = Math.max(leftHeight, rightHeight) + 1;
        root.val = height;// 用TreeNode.val来保存当前结点的高度
        return height;
    }
}

当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。

虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。

例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!

因为对于回溯算法已经是非常复杂的递归了,如果再用迭代的话,就是自己给自己找麻烦,效率也并不一定高。

总结

通过本题可以了解求二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。

本题迭代法其实有点复杂,大家可以有一个思路,也不一定说非要写出来。

但是递归方式是一定要掌握的!

13.二叉树的所有路径

力扣题目链接
给定一个二叉树,返回所有从根节点到叶子节点的路径。

说明: 叶子节点是指没有子节点的节点。

思路

这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。

在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。

前序遍历以及回溯的过程如图:

我们先使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。

递归

1.递归函数参数以及返回值
要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:
private void traversal(TreeNode root, List<Integer> paths, List<String> res)

2.确定递归终止条件
因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。

那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

所以本题的终止条件是:

if (root.left == null && root.right == null) {
    终止处理逻辑
}

再来看一下终止处理的逻辑。

这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。

那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。

可能有的同学问了,我看有些人的代码也没有回溯啊。

其实是有回溯的,只不过隐藏在函数调用时的参数赋值里,下文我还会提到。

这里我们先使用vector结构的path容器来记录路径,那么终止处理逻辑如下:

if (root.left == null && root.right == null) {
    // 输出
    StringBuilder sb = new StringBuilder();// StringBuilder用来拼接字符串,速度更快
    for (int i = 0; i < paths.size() - 1; i++) {
        sb.append(paths.get(i)).append("->");
    }
    sb.append(paths.get(paths.size() - 1));// 记录最后一个节点
    res.add(sb.toString());// 收集一个路径
    return;
}

3.确定单层递归逻辑
因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。
paths.remove(paths.size() - 1)
然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。

所以递归前要加上判断语句,下面要递归的节点是否为空,如下
if (root.left != null) { // 左
traversal(root.left, paths, res);
}
if (root.right != null) { // 右
traversal(root.right, paths, res);
}

此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。
我们知道,回溯和递归是一一对应的,有一个递归,就要有一个回溯,所以回溯要和递归永远在一起。
那么代码应该这么写:

if (root.left != null) { // 左
    traversal(root.left, paths, res);
    paths.remove(paths.size() - 1);// 回溯
}
if (root.right != null) { // 右
    traversal(root.right, paths, res);
    paths.remove(paths.size() - 1);// 回溯
}

那么本题整体代码如下:

//解法一

//方式一
class Solution {
    /**
     * 递归法
     */
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();// 存最终的结果
        if (root == null) {
            return res;
        }
        List<Integer> paths = new ArrayList<>();// 作为结果中的路径
        traversal(root, paths, res);
        return res;
    }

    private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
        paths.add(root.val);// 前序遍历,中
        // 遇到叶子结点
        if (root.left == null && root.right == null) {
            // 输出
            StringBuilder sb = new StringBuilder();// StringBuilder用来拼接字符串,速度更快
            for (int i = 0; i < paths.size() - 1; i++) {
                sb.append(paths.get(i)).append("->");
            }
            sb.append(paths.get(paths.size() - 1));// 记录最后一个节点
            res.add(sb.toString());// 收集一个路径
            return;
        }
        // 递归和回溯是同时进行,所以要放在同一个花括号里
        if (root.left != null) { // 左
            traversal(root.left, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
        if (root.right != null) { // 右
            traversal(root.right, paths, res);
            paths.remove(paths.size() - 1);// 回溯
        }
    }
}

//方式二
class Solution {

    List<String> result = new ArrayList<>();

    public List<String> binaryTreePaths(TreeNode root) {
        deal(root, "");
        return result;
    }

    public void deal(TreeNode node, String s) {
        if (node == null)
            return;
        if (node.left == null && node.right == null) {
            result.add(new StringBuilder(s).append(node.val).toString());
            return;
        }
        String tmp = new StringBuilder(s).append(node.val).append("->").toString();
        deal(node.left, tmp);
        deal(node.right, tmp);
    }
}

第二种递归的代码虽然精简但把很多重要的点隐藏在了代码细节里,第一种递归写法虽然代码多一些,但是把每一个逻辑处理都完整的展现出来了。

迭代法(推荐)

至于非递归的方式,我们可以依然可以使用前序遍历的迭代方式来模拟遍历路径的过程。

这里除了模拟递归需要一个栈,同时还需要一个栈来存放对应的遍历路径。当然,使用java的同学,可以直接定义一个成员变量为object的栈Stack stack = new Stack<>();,这样就不用定义两个栈了,都放到一个栈里就可以了。
代码如下:

// 解法二
class Solution {
    /**
     * 迭代法
     */
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> result = new ArrayList<>();
        if (root == null)
            return result;
        Stack<Object> stack = new Stack<>();
        // 节点和路径同时入栈
        stack.push(root);
        stack.push(root.val + "");
        while (!stack.isEmpty()) {
            // 节点和路径同时出栈
            String path = (String) stack.pop();
            TreeNode node = (TreeNode) stack.pop();
            // 若找到叶子节点
            if (node.left == null && node.right == null) {
                result.add(path);
            }
            //右子节点不为空
            if (node.right != null) {
                stack.push(node.right);
                stack.push(path + "->" + node.right.val);
            }
            //左子节点不为空
            if (node.left != null) {
                stack.push(node.left);
                stack.push(path + "->" + node.left.val);
            }
        }
        return result;
    }
}

总结

本文我们开始初步涉及到了回溯,很多同学过了这道题目,可能都不知道自己其实使用了回溯,回溯和递归都是相伴相生的。

我在第一版递归代码中,把递归与回溯的细节都充分的展现了出来,大家可以自己感受一下。

第二版递归代码对于初学者其实非常不友好,代码看上去简单,但是隐藏细节于无形。

最后我依然给出了迭代法。

对于本题充分了解递归与回溯的过程之后,有精力的同学可以再去实现迭代法。

14.二叉树周末总结

15.左叶子之和

力扣题目链接
计算给定二叉树的所有左叶子之和。

思路

首先要注意是判断左叶子,不是二叉树左侧节点,所以不要上来想着层序遍历。

因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点

大家思考一下如下图中二叉树,左叶子之和究竟是多少?

0,因为这棵树根本没有左叶子!
但看这个图的左叶子之和是多少?

相信通过这两个图,大家对最左叶子的定义有明确理解了。

那么判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。

如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子,判断代码如下:

if (root.left != null && root.left.left == null && root.left.right == null) {
左叶子节点处理逻辑
}

递归法

递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。

递归三部曲:

1.确定递归函数的参数和返回值
判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int

使用题目中给出的函数就可以了。

2.确定终止条件
如果遍历到空节点,那么左叶子值一定是0
if (root == NULL) return 0;
注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0,那么终止条件为:

if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0; //其实这个也可以不写,如果不写不影响结果,但就会让递归多进行了一层

3.确定单层递归的逻辑
当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。
代码如下:

int midValue = 0;
if (root.left != null && root.left.left == null && root.left.right == null) { 
    midValue = root.left.val;
}
int sum = midValue + leftValue + rightValue;  // 中
return sum;

整体递归代码如下:

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        int leftValue = sumOfLeftLeaves(root.left);    // 左
        int rightValue = sumOfLeftLeaves(root.right);  // 右
                                                       
        int midValue = 0;
        if (root.left != null && root.left.left == null && root.left.right == null) { 
            midValue = root.left.val;
        }
        int sum = midValue + leftValue + rightValue;  // 中
        return sum;
    }
}

迭代法(推荐)

本题迭代法使用前中后序都是可以的,只要把左叶子节点统计出来,就可以了。
判断条件都是一样的,代码如下:

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if (root == null) return 0;
        Stack<TreeNode> stack = new Stack<> ();
        stack.add(root);
        int result = 0;
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            if (node.left != null && node.left.left == null && node.left.right == null) {
                result += node.left.val;
            }
            if (node.right != null) stack.add(node.right);
            if (node.left != null) stack.add(node.left);
        }
        return result;
    }
}
// 层序遍历迭代法
class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        int sum = 0;
        if (root == null) return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size -- > 0) {
                TreeNode node = queue.poll();
                if (node.left != null) { // 左节点不为空
                    queue.offer(node.left);
                    if (node.left.left == null && node.left.right == null){ // 左叶子节点
                        sum += node.left.val;
                    }
                }
                if (node.right != null) queue.offer(node.right);
            }
        }
        return sum;
    }
}

总结

这道题目要求左叶子之和,其实是比较绕的,因为不能判断本节点是不是左叶子节点。

此时就要通过节点的父节点来判断其左孩子是不是左叶子了。

平时我们解二叉树的题目时,已经习惯了通过节点的左右孩子判断本节点的属性,而本题我们要通过节点的父节点判断本节点的属性。

希望通过这道题目,可以扩展大家对二叉树的解题思路。

16.找树左下角的值

力扣题目链接
给定一个二叉树,在树的最后一行找到最左边的值。
示例 1:

示例 2:

思路

本题要找出树的最后一行的最左边的值。此时大家应该想起用层序遍历是非常简单的了,反而用递归的话会比较难一点。

我们依然还是先介绍递归法。

递归

咋眼一看,这道题目用递归的话就就一直向左遍历,最后一个就是答案呗?

没有这么简单,一直向左遍历到最后一个,它未必是最后一行啊。

我们来分析一下题目:在树的最后一行找到最左边的值

首先要是最后一行,然后是最左边的值。

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

所以要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

1.确定递归函数的参数和返回值
参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

private int Deep = -1; // 全局变量 记录最大深度
private int value = 0;  // 全局变量 最大深度最左节点的数值
private void findLeftValue (TreeNode root,int deep)

2.确定终止条件
当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。
代码如下:

if (root.left == null && root.right == null) {
    if (deep > Deep) {
        value = root.val;
        Deep = deep;
    }
}

3.确定单层递归的逻辑
在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

if (root.left != null) findLeftValue(root.left,deep + 1);
if (root.right != null) findLeftValue(root.right,deep + 1);

完整代码如下:

// 递归法
class Solution {
    private int Deep = -1;
    private int value = 0;
    public int findBottomLeftValue(TreeNode root) {
        value = root.val;
        findLeftValue(root,0);
        return value;
    }

    private void findLeftValue (TreeNode root,int deep) {
        if (root == null) return;
        if (root.left == null && root.right == null) {
            if (deep > Deep) {
                value = root.val;
                Deep = deep;
            }
        }
        if (root.left != null) findLeftValue(root.left,deep + 1);
        if (root.right != null) findLeftValue(root.right,deep + 1);
    }
}

迭代法

本题使用层序遍历再合适不过了,比递归要好理解得多!
只需要记录最后一行第一个节点的数值就可以了。

//迭代法

class Solution {

    public int findBottomLeftValue(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int res = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode poll = queue.poll();
                if (i == 0) {
                    res = poll.val;
                }
                if (poll.left != null) {
                    queue.offer(poll.left);
                }
                if (poll.right != null) {
                    queue.offer(poll.right);
                }
            }
        }
        return res;
    }
}

总结

本题涉及如下几点:
递归求深度的写法、递归中其实隐藏了回溯、层次遍历。

17.路径总和

力扣题目链接
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

思路

相信很多同学都会疑惑,递归函数什么时候要有返回值,什么时候没有返回值,特别是有的时候递归函数返回类型为bool类型。

那么接下来我通过详细讲解如下两道题,来回答这个问题:

  • 112.路径总和(opens new window)
  • 113.路径总和ii

这道题我们要遍历从根节点到叶子节点的路径看看总和是不是目标和。

递归

可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树
1.确定递归函数的参数和返回类型
参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先中介绍))
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:


图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:
public boolean haspathsum(treenode root, int targetsum)
2.确定终止条件
首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (root.left == null && root.right == null) {
    return targetsum == 0;
}

3.确定单层递归的逻辑
因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (root.left != null) {
    boolean left = haspathsum(root.left, targetsum);
    if (left) {      // 已经找到
        return true;
    }
}
if (root.right != null) {
    boolean right = haspathsum(root.right, targetsum);
    if (right) {     // 已经找到
        return true;
    }
}
return false;

整体代码如下:

class solution {
   public boolean haspathsum(treenode root, int targetsum) {
        if (root == null) {
            return false;
        }
        targetsum -= root.val;
        // 叶子结点
        if (root.left == null && root.right == null) {
            return targetsum == 0;
        }
        if (root.left != null) {
            boolean left = haspathsum(root.left, targetsum);
            if (left) {      // 已经找到
                return true;
            }
        }
        if (root.right != null) {
            boolean right = haspathsum(root.right, targetsum);
            if (right) {     // 已经找到
                return true;
            }
        }
        return false;
    }
}

// lc112 简洁方法
class solution {
    public boolean haspathsum(treenode root, int targetsum) {

        if (root == null) return false; // 为空退出

        // 叶子节点判断是否符合
        if (root.left == null && root.right == null) return root.val == targetsum;

        // 求两侧分支的路径和
        return haspathsum(root.left, targetsum - root.val) || haspathsum(root.right, targetsum - root.val);
    }
}

迭代

如果使用栈模拟递归的话,那么如果做回溯呢?

此时栈里一个元素不仅要记录该节点指针,还要记录从头结点到该节点的路径数值总和。

如下代码是使用栈模拟的前序遍历,如下:(详细注释)

class solution {
    public boolean haspathsum(treenode root, int targetsum) {
        if(root == null) return false;
        stack<treenode> stack1 = new stack<>();
        stack<integer> stack2 = new stack<>();
        stack1.push(root);
        stack2.push(root.val);
        while(!stack1.isempty()) {
            int size = stack1.size();

            for(int i = 0; i < size; i++) {
                treenode node = stack1.pop();
                int sum = stack2.pop();

                // 如果该节点是叶子节点了,同时该节点的路径数值等于sum,那么就返回true
                if(node.left == null && node.right == null && sum == targetsum) {
                    return true;
                }
                // 右节点,压进去一个节点的时候,将该节点的路径数值也记录下来
                if(node.right != null){
                    stack1.push(node.right);
                    stack2.push(sum + node.right.val);
                }
                // 左节点,压进去一个节点的时候,将该节点的路径数值也记录下来
                if(node.left != null) {
                    stack1.push(node.left);
                    stack2.push(sum + node.left.val);
                }
            }
        }
        return false;
    }
}

相关题目推荐

113. 路径总和ii

力扣题目链接

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

思路
113.路径总和ii要遍历整个树,找到所有路径,所以递归函数不要返回值!
如图:

为了尽可能的把细节体现出来,我写出如下代码(这份代码并不简洁,但是逻辑非常清晰)

class solution {
    public List<List<Integer>> pathsum(TreeNode root, int targetsum) {
        List<List<Integer>> res = new ArrayList<>();
        if (root == null) return res; // 非空判断

        List<Integer> path = new LinkedList<>();
        preorderdfs(root, targetsum, res, path);
        return res;
    }

    public void preorderdfs(TreeNode root, int targetsum, List<List<Integer>> res, List<Integer> path) {
        path.add(root.val);
        // 遇到了叶子节点
        if (root.left == null && root.right == null) {
            // 找到了和为 targetsum 的路径
            if (targetsum - root.val == 0) {
                res.add(new ArrayList<>(path));
            }
            return; // 如果和不为 targetsum,返回
        }

        if (root.left != null) {
            preorderdfs(root.left, targetsum - root.val, res, path);
            path.remove(path.size() - 1); // 回溯
        }
        if (root.right != null) {
            preorderdfs(root.right, targetsum - root.val, res, path);
            path.remove(path.size() - 1); // 回溯
        }
    }
}
// 解法2
class Solution {
    List<List<Integer>> result;
    LinkedList<Integer> path;
    public List<List<Integer>> pathSum (TreeNode root,int targetSum) {
        result = new LinkedList<>();
        path = new LinkedList<>();
        travesal(root, targetSum);
        return result;
    }
    private void travesal(TreeNode root,  int count) {
        if (root == null) return;
        path.offer(root.val);
        count -= root.val;
        if (root.left == null && root.right == null && count == 0) {
            result.add(new LinkedList<>(path));
        }
        travesal(root.left, count);
        travesal(root.right, count);
        path.removeLast(); // 回溯
    }
}
// 解法3 DFS统一迭代法
class Solution {
    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        List<List<Integer>> result = new ArrayList<>();
        Stack<TreeNode> nodeStack = new Stack<>();
        Stack<Integer> sumStack = new Stack<>();
        Stack<ArrayList<Integer>> pathStack = new Stack<>();
        if(root == null)
            return result;
        nodeStack.add(root);
        sumStack.add(root.val);
        pathStack.add(new ArrayList<>());

        while(!nodeStack.isEmpty()){
            TreeNode currNode = nodeStack.peek();
            int currSum = sumStack.pop();
            ArrayList<Integer> currPath = pathStack.pop();
            if(currNode != null){
                nodeStack.pop();
                nodeStack.add(currNode);
                nodeStack.add(null);
                sumStack.add(currSum);
                currPath.add(currNode.val);
                pathStack.add(new ArrayList(currPath));
                if(currNode.right != null){
                    nodeStack.add(currNode.right);
                    sumStack.add(currSum + currNode.right.val);
                    pathStack.add(new ArrayList(currPath));
                }
                if(currNode.left != null){
                    nodeStack.add(currNode.left);
                    sumStack.add(currSum + currNode.left.val);
                    pathStack.add(new ArrayList(currPath));
                }
            }else{
                nodeStack.pop();
                TreeNode temp = nodeStack.pop();
                if(temp.left == null && temp.right == null && currSum == targetSum)
                    result.add(new ArrayList(currPath));
            }
        }
        return result;
    }
}

总结

本篇通过leetcode上112.路径总和 和 113.路径总和ii 详细的讲解了 递归函数什么时候需要返回值,什么不需要返回值。

这两道题目是掌握这一知识点非常好的题目,大家看完本篇文章再去做题,就会感受到搜索整棵树和搜索某一路径的差别。

对于112. 路径总和,我依然给出了递归法和迭代法,这种题目其实用迭代法会复杂一些,能掌握递归方式就够了!

18.从中序与后序遍历序列构造二叉树

力扣题目链接

根据一棵树的中序遍历与后序遍历构造二叉树。
注意: 你可以假设树中没有重复的元素。

例如,给出

  • 中序遍历 inorder = [9,3,15,20,7]
  • 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

那么代码应该怎么写呢?
说到一层一层切割,就应该想到了递归。
来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。
  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
  • 第五步:切割后序数组,切成后序左数组和后序右数组
  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd) 

// 第一步
if (inBegin >= inEnd || postBegin >= postEnd) {  // 不满足左闭右开,说明没有元素,返回空树
    return null;
}

// 第二步:后序遍历数组最后一个元素,就是当前的中间节点
int rootIndex = map.get(postorder[postEnd - 1]);  
TreeNode root = new TreeNode(inorder[rootIndex]); 

// 第三步:找切割点
map = new HashMap<>();
for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
    map.put(inorder[i], i);
}

// 第四步:切割中序数组,得到 中序左数组和中序右数组
// 第五步:切割后序数组,得到 后序左数组和后序右数组

// 第六步
root.left = findNode(inorder, inBegin, rootIndex,
                    postorder, postBegin, postBegin + lenOfLeft);
root.right = findNode(inorder, rootIndex + 1, inEnd,
                    postorder, postBegin + lenOfLeft, postEnd - 1);

return root;

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!
首先要切割中序数组,为什么先切割中序数组呢?
切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割。我们坚持左闭右开的原则。

然后切割后序数组。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?
后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。
此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。
中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。
完整代码如下:

class Solution {
    Map<Integer, Integer> map;  // 方便根据数值查找位置
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
            map.put(inorder[i], i);
        }

        return findNode(inorder,  0, inorder.length, postorder,0, postorder.length);  // 前闭后开
    }

    public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd) {
        // 参数里的范围都是前闭后开
        if (inBegin >= inEnd || postBegin >= postEnd) {  // 不满足左闭右开,说明没有元素,返回空树
            return null;
        }
        int rootIndex = map.get(postorder[postEnd - 1]);  // 找到后序遍历的最后一个元素在中序遍历中的位置
        TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点
        int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定后序数列的个数
        root.left = findNode(inorder, inBegin, rootIndex,
                            postorder, postBegin, postBegin + lenOfLeft);
        root.right = findNode(inorder, rootIndex + 1, inEnd,
                            postorder, postBegin + lenOfLeft, postEnd - 1);

        return root;
    }
}

下面给出用下标索引写出的代码版本:

class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if(postorder.length == 0 || inorder.length == 0)
            return null;
        return buildHelper(inorder, 0, inorder.length, postorder, 0, postorder.length);
    
    }
    private TreeNode buildHelper(int[] inorder, int inorderStart, int inorderEnd, int[] postorder, int postorderStart, int postorderEnd){
        if(postorderStart == postorderEnd)
            return null;
        int rootVal = postorder[postorderEnd - 1];
        TreeNode root = new TreeNode(rootVal);
        int middleIndex;
        for (middleIndex = inorderStart; middleIndex < inorderEnd; middleIndex++){
            if(inorder[middleIndex] == rootVal)
                break;
        }

        int leftInorderStart = inorderStart; 
        int leftInorderEnd = middleIndex;
        int rightInorderStart = middleIndex + 1;
        int rightInorderEnd = inorderEnd;


        int leftPostorderStart = postorderStart;
        int leftPostorderEnd = postorderStart + (middleIndex - inorderStart);
        int rightPostorderStart = leftPostorderEnd;
        int rightPostorderEnd = postorderEnd - 1;
        root.left = buildHelper(inorder, leftInorderStart, leftInorderEnd,  postorder, leftPostorderStart, leftPostorderEnd);
        root.right = buildHelper(inorder, rightInorderStart, rightInorderEnd, postorder, rightPostorderStart, rightPostorderEnd);

        return root;
    }  
}

相关题目推荐

105.从前序与中序遍历序列构造二叉树

力扣题目链接

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:

思路
本题和前面是一样的道理。
代码如下:

class Solution {
    Map<Integer, Integer> map;
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
            map.put(inorder[i], i);
        }

        return findNode(preorder, 0, preorder.length, inorder,  0, inorder.length);  // 前闭后开
    }

    public TreeNode findNode(int[] preorder, int preBegin, int preEnd, int[] inorder, int inBegin, int inEnd) {
        // 参数里的范围都是前闭后开
        if (preBegin >= preEnd || inBegin >= inEnd) {  // 不满足左闭右开,说明没有元素,返回空树
            return null;
        }
        int rootIndex = map.get(preorder[preBegin]);  // 找到前序遍历的第一个元素在中序遍历中的位置
        TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点
        int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定前序数列的个数
        root.left = findNode(preorder, preBegin + 1, preBegin + lenOfLeft + 1,
                            inorder, inBegin, rootIndex);
        root.right = findNode(preorder, preBegin + lenOfLeft + 1, preEnd,
                            inorder, rootIndex + 1, inEnd);

        return root;
    }
}

思考题

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。
举一个例子:

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

总结

之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。所以要避免眼高手低,踏实地把代码写出来。
最后我还给出了为什么前序和中序可以唯一确定一棵二叉树,后序和中序可以唯一确定一棵二叉树,而前序和后序却不行。
认真研究完本篇,相信大家对二叉树的构造会清晰很多。

19.最大二叉树

力扣题目地址

给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:

  • 二叉树的根是数组中的最大元素。
  • 左子树是通过数组中最大值左边部分构造出的最大二叉树。
  • 右子树是通过数组中最大值右边部分构造出的最大二叉树。

通过给定的数组构建最大二叉树,并且输出这个树的根节点。
示例 :

提示:
给定的数组的大小在 [1, 1000] 之间。

思路

最大二叉树的构建过程如下:

构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

代码如下:

class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        return constructMaximumBinaryTree1(nums, 0, nums.length);
    }

    public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
        if (rightIndex - leftIndex < 1) {// 没有元素了
            return null;
        }
        if (rightIndex - leftIndex == 1) {// 只有一个元素
            return new TreeNode(nums[leftIndex]);
        }
        int maxIndex = leftIndex;// 最大值所在位置
        int maxVal = nums[maxIndex];// 最大值
        for (int i = leftIndex + 1; i < rightIndex; i++) {
            if (nums[i] > maxVal){
                maxVal = nums[i];
                maxIndex = i;
            }
        }
        TreeNode root = new TreeNode(maxVal);
        // 根据maxIndex划分左右子树
        root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
        root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
        return root;
    }
}

总结

注意类似用数组构造二叉树的题目,每次分隔尽量不要定义新的数组,而是通过下标索引直接在原数组上操作,这样可以节约时间和空间上的开销。

一些同学也会疑惑,什么时候递归函数前面加if,什么时候不加if,这个问题我在最后也给出了解释。

其实就是不同代码风格的实现,一般情况来说:如果让空节点(空指针)进入递归,就不加if,如果不让空节点进入递归,就加if限制一下, 终止条件也会相应的调整。

20.二叉树周末总结

21.合并二叉树

力扣题目链接
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

示例 1:

注意: 合并必须从两个树的根节点开始。

思路

相信这道题目很多同学疑惑的点是如何同时遍历两个二叉树呢?
其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。

递归

二叉树使用递归,就要想使用前中后哪种遍历方式?

本题使用哪种遍历都是可以的!

我们下面以前序遍历为例。

如下:

那么我们来按照递归三部曲来解决:
1.确定递归函数的参数和返回值:
首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。
2.确定终止条件:
因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

3.确定单层递归的逻辑:
单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。
接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。

t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。

最终t1就是合并之后的根节点。
代码如下:(前序遍历)

class Solution {
    // 递归
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;

        root1.val += root2.val;
        root1.left = mergeTrees(root1.left,root2.left);
        root1.right = mergeTrees(root1.right,root2.right);
        return root1;
    }
}

迭代法

使用迭代法,如何同时处理两棵树呢?

求二叉树对称的时候是把两个树的节点同时加入队列进行比较。

本题我们也可以使用队列,模拟的层序遍历,代码如下:

class Solution {
    // 使用队列迭代
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 ==null) return root1;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root1);
        queue.offer(root2);
        while (!queue.isEmpty()) {
            TreeNode node1 = queue.poll();
            TreeNode node2 = queue.poll();
            // 此时两个节点一定不为空,val相加
            node1.val = node1.val + node2.val;
            // 如果两棵树左节点都不为空,加入队列
            if (node1.left != null && node2.left != null) {
                queue.offer(node1.left);
                queue.offer(node2.left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1.right != null && node2.right != null) {
                queue.offer(node1.right);
                queue.offer(node2.right);
            }
            // 若node1的左节点为空,直接赋值
            if (node1.left == null && node2.left != null) {
                node1.left = node2.left;
            }
            // 若node1的右节点为空,直接赋值
            if (node1.right == null && node2.right != null) {
                node1.right = node2.right;
            }
        }
        return root1;
    }
}

使用栈迭代

class Solution {
    // 使用栈迭代
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) {
            return root2;
        }
        if (root2 == null) {
            return root1;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root2);
        stack.push(root1);
        while (!stack.isEmpty()) {
            TreeNode node1 = stack.pop();
            TreeNode node2 = stack.pop();
            node1.val += node2.val;
            if (node2.right != null && node1.right != null) {
                stack.push(node2.right);
                stack.push(node1.right);
            } else {
                if (node1.right == null) {
                    node1.right = node2.right;
                }
            }
            if (node2.left != null && node1.left != null) {
                stack.push(node2.left);
                stack.push(node1.left);
            } else {
                if (node1.left == null) {
                    node1.left = node2.left;
                }
            }
        }
        return root1;
    }
}

22.二叉搜索树中的搜索

力扣题目地址
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

例如,

在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。

思路

之前我们讲的都是普通二叉树,那么接下来看看二叉搜索树。

在二叉树理论基础中,我们已经讲过了二叉搜索树。

二叉搜索树是一个有序树:

若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉搜索树
这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。

递归法

1.确定递归函数的参数和返回值
递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

2.确定终止条件
如果root为空,或者找到这个数值了,就返回root节点。

3.确定单层递归的逻辑
看看二叉搜索树的单层递归逻辑有何不同。

因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。

如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

代码如下:

class Solution {
    // 递归,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        TreeNode left = searchBST(root.left, val);
        if (left != null) {
            return left;
        }
        return searchBST(root.right, val);
    }
}

class Solution {
    // 递归,利用二叉搜索树特点,优化
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        if (val < root.val) {
            return searchBST(root.left, val);
        } else {
            return searchBST(root.right, val);
        }
    }
}

迭代法

一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。

对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。

对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。

对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。

中间节点如果大于3就向左走,如果小于3就向右走,如图:

所以迭代法代码如下:

class Solution {
    // 迭代,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode pop = stack.pop();
            if (pop.val == val) {
                return pop;
            }
            if (pop.right != null) {
                stack.push(pop.right);
            }
            if (pop.left != null) {
                stack.push(pop.left);
            }
        }
        return null;
    }
}

class Solution {
    // 迭代,利用二叉搜索树特点,优化,可以不需要栈
    public TreeNode searchBST(TreeNode root, int val) {
        while (root != null)
            if (val < root.val) root = root.left;
            else if (val > root.val) root = root.right;
            else return root;
        return null;
    }
}

总结

本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。

23.验证二叉搜索树

力扣题目链接
给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

思路

要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。
这道题目比较容易陷入两个陷阱:

  • 陷阱1

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了。我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。
例如: [10,5,15,null,null,6,20] 这个case:

  • 陷阱2

样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。

此时可以初始化比较元素为longlong的最小值。

问题可以进一步演进:如果样例中根节点的val 可能是longlong的最小值 又要怎么办呢?文中会解答。

了解这些陷阱之后我们来看一下代码应该怎么写:

递归三部曲:
1.确定递归函数,返回值以及参数
要定义一个全局变量,用来比较遍历的节点是否有序。

注意递归函数要有bool类型的返回值,只有寻找某一条边(或者一个节点)的时候,递归函数会有bool类型的返回值。

其实本题是同样的道理,我们在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

2.确定终止条件
如果是空节点 是不是二叉搜索树呢?

是的,二叉搜索树也可以为空!
3.确定单层递归的逻辑
中序遍历,一直更新max,一旦发现max >= root.val,就返回false,注意元素相同时候也要返回false。

代码如下:

class Solution {
    // 递归
    TreeNode max;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        // 左
        boolean left = isValidBST(root.left);
        if (!left) {
            return false;
        }
        // 中
        if (max != null && root.val <= max.val) {
            return false;
        }
        max = root;
        // 右
        boolean right = isValidBST(root.right);
        return right;
    }
}
// 简洁实现·递归解法
class Solution {
    public boolean isValidBST(TreeNode root) {
        return validBST(Long.MIN_VALUE, Long.MAX_VALUE, root);
    }
    boolean validBST(long lower, long upper, TreeNode root) {
        if (root == null) return true;
        if (root.val <= lower || root.val >= upper) return false;
        return validBST(lower, root.val, root.left) && validBST(root.val, upper, root.right);
    }
}

迭代法

迭代法中序遍历稍加改动就可以了,代码如下:

class Solution {
    // 迭代
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;// 左
            }
            // 中,处理
            TreeNode pop = stack.pop();
            if (pre != null && pop.val <= pre.val) {
                return false;
            }
            pre = pop;

            root = pop.right;// 右
        }
        return true;
    }
}

// 简洁实现·中序遍历
class Solution {
    private long prev = Long.MIN_VALUE;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        if (!isValidBST(root.left)) {
            return false;
        }
        if (root.val <= prev) { // 不满足二叉搜索树条件
            return false;
        }
        prev = root.val;
        return isValidBST(root.right);
    }
}
//使用統一迭代法
class Solution {
    public boolean isValidBST(TreeNode root) {
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        if(root != null)
            stack.add(root);        
        while(!stack.isEmpty()){
            TreeNode curr = stack.peek();
            if(curr != null){
                stack.pop();
                if(curr.right != null)
                    stack.add(curr.right);
                stack.add(curr);
                stack.add(null);
                if(curr.left != null)
                    stack.add(curr.left);
            }else{
                stack.pop();
                TreeNode temp = stack.pop();
                if(pre != null && pre.val >= temp.val)
                    return false;
                pre = temp;
            }
        }
        return true;
    }
}

总结

这道题目是一个简单题,但对于没接触过的同学还是有难度的。

所以初学者刚开始学习算法的时候,看到简单题目没有思路很正常,千万别怀疑自己智商,学习过程都是这样的,大家智商都差不多。

只要把基本类型的题目都做过,总结过之后,思路自然就开阔了。

24.二叉搜索树的最小绝对差

力扣题目链接
给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。
示例:

提示:树中至少有 2 个节点。

思路

题目中要求在二叉搜索树上任意两节点的差的绝对值的最小值。

注意是二叉搜索树,二叉搜索树可是有序的。

遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了

递归

那么二叉搜索树采用中序遍历,其实就是一个有序数组。

在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。

最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。其实在二叉搜素树中序遍历的过程中,我们就可以直接计算了。
需要用一个pre节点记录一下cur节点的前一个节点。
如图:

代码如下:

class Solution {
    TreeNode pre;// 记录上一个遍历的结点
    int result = Integer.MAX_VALUE;
    public int getMinimumDifference(TreeNode root) {
       if(root==null)return 0;
       traversal(root);
       return result;
    }
    public void traversal(TreeNode root){
        if(root==null)return;
        //左
        traversal(root.left);
        //中
        if(pre!=null){
            result = Math.min(result,root.val-pre.val);
        }
        pre = root;
        //右
        traversal(root.right);
    }
}

迭代

给出其中的一种中序遍历的迭代法,代码如下:

class Solution {
    TreeNode pre;
    Stack<TreeNode> stack;
    public int getMinimumDifference(TreeNode root) {
        if (root == null) return 0;
        stack = new Stack<>();
        TreeNode cur = root;
        int result = Integer.MAX_VALUE;
        while (cur != null || !stack.isEmpty()) {
            if (cur != null) {
                stack.push(cur); // 将访问的节点放进栈
                cur = cur.left; // 左
            }else {
                cur = stack.pop(); 
                if (pre != null) { // 中
                    result = Math.min(result, cur.val - pre.val);
                }
                pre = cur;
                cur = cur.right; // 右
            }
        }
        return result;
    }
}

統一迭代法-中序遍历

class Solution {
    public int getMinimumDifference(TreeNode root) {
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        int result = Integer.MAX_VALUE;

        if(root != null)
            stack.add(root);
        while(!stack.isEmpty()){
            TreeNode curr = stack.peek();
            if(curr != null){
                stack.pop();
                if(curr.right != null)
                    stack.add(curr.right);
                stack.add(curr);
                stack.add(null);
                if(curr.left != null)
                    stack.add(curr.left);
            }else{
                stack.pop();
                TreeNode temp = stack.pop();
                if(pre != null)
                    result = Math.min(result, temp.val - pre.val);
                pre = temp;
            }
        }
        return result;
    }
}

总结

遇到在二叉搜索树上求什么最值,求差值之类的,都要思考一下二叉搜索树可是有序的,要利用好这一特点。
同时要学会在递归遍历的过程中如何记录前后两个指针,这也是一个小技巧,学会了还是很受用的。
后面我将继续介绍一系列利用二叉搜索树特性的题目。

25.二叉搜索树中的众数

力扣题目链接

给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。
假定 BST 有如下定义:

  • 结点左子树中所含结点的值小于等于当前结点的值
  • 结点右子树中所含结点的值大于等于当前结点的值
  • 左子树和右子树都是二叉搜索树

例如:

给定 BST [1,null,2,2],

返回[2].

提示:如果众数超过1个,不需考虑输出顺序

进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)

思路

这道题目呢,递归法我从两个维度来讲。

首先如果不是二叉搜索树的话,应该怎么解题,是二叉搜索树,又应该如何解题,两种方式做一个比较,可以加深大家对二叉树的理解。

递归法

如果不是二叉搜索树
如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。

具体步骤如下:

1.这个树都遍历了,用map统计频率
至于用前中后序哪种遍历也不重要,因为就是要全遍历一遍,怎么个遍历法都行,层序遍历都没毛病!

这里采用前序遍历,代码如下:

// map<int, int> key:元素,value:出现频率
void searchBST(TreeNode curr, Map<Integer, Integer> map) {
	if (curr == null) return;
	map.put(curr.val, map.getOrDefault(curr.val, 0) + 1);
	searchBST(curr.left, map);
	searchBST(curr.right, map);
}

2.把统计的出来的出现频率(即map中的value)排个序
有的同学可能可以想直接对map中的value排序,还真做不到,C++中如果使用std::map或者std::multimap可以对key排序,但不能对value排序。

3.取前面高频的元素
此时list中已经是存放着按照频率排好序的pair,那么把前面高频的元素取出来就可以了。

整体代码如下:

class Solution {
	public int[] findMode(TreeNode root) {
		Map<Integer, Integer> map = new HashMap<>();
		List<Integer> list = new ArrayList<>();
		if (root == null) return list.stream().mapToInt(Integer::intValue).toArray();
		// 获得频率 Map
		searchBST(root, map);
		List<Map.Entry<Integer, Integer>> mapList = map.entrySet().stream()
				.sorted((c1, c2) -> c2.getValue().compareTo(c1.getValue()))
				.collect(Collectors.toList());
		list.add(mapList.get(0).getKey());
		// 把频率最高的加入 list
		for (int i = 1; i < mapList.size(); i++) {
			if (mapList.get(i).getValue() == mapList.get(i - 1).getValue()) {
				list.add(mapList.get(i).getKey());
			} else {
				break;
			}
		}
		return list.stream().mapToInt(Integer::intValue).toArray();
	}

	void searchBST(TreeNode curr, Map<Integer, Integer> map) {
		if (curr == null) return;
		map.put(curr.val, map.getOrDefault(curr.val, 0) + 1);
		searchBST(curr.left, map);
		searchBST(curr.right, map);
	}

}

是二叉搜索树
既然是搜索树,它中序遍历就是有序的。
如图:

遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。
关键是在有序数组上的话,好搞,在树上怎么搞呢?
弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。

而且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。

此时又有问题了,因为要求最大频率的元素集合(注意是集合,不是一个元素,可以有多个众数),如果是数组上大家一般怎么办?
应该是先遍历一遍数组,找出最大频率(maxCount),然后再重新遍历一遍数组把出现频率为maxCount的元素放进集合。(因为众数有多个)
这种方式遍历了两遍数组。
那么我们遍历两遍二叉搜索树,把众数集合算出来也是可以的。

但这里其实只需要遍历一次就可以找到所有的众数。

那么如何只遍历一遍呢?

如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中(以下代码为result数组),但是有问题,万一,这个maxCount此时还不是真正最大频率呢。

所以下面要做如下操作:
频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。
代码如下:

class Solution {
    ArrayList<Integer> resList;
    int maxCount;
    int count;
    TreeNode pre;

    public int[] findMode(TreeNode root) {
        resList = new ArrayList<>();
        maxCount = 0;
        count = 0;
        pre = null;
        findMode1(root);
        int[] res = new int[resList.size()];
        for (int i = 0; i < resList.size(); i++) {
            res[i] = resList.get(i);
        }
        return res;
    }

    public void findMode1(TreeNode root) {
        if (root == null) {
            return;
        }
        findMode1(root.left);

        int rootValue = root.val;
        // 计数
        if (pre == null || rootValue != pre.val) {
            count = 1;
        } else {
            count++;
        }
        // 更新结果以及maxCount
        if (count > maxCount) {
            resList.clear();
            resList.add(rootValue);
            maxCount = count;
        } else if (count == maxCount) {
            resList.add(rootValue);
        }
        pre = root;

        findMode1(root.right);
    }
}

迭代法

只要把中序遍历转成迭代,中间节点的处理逻辑完全一样。
下面我给出其中的一种中序遍历的迭代法,其中间处理逻辑一点都没有变(我从递归法直接粘过来的代码,连注释都没改)

class Solution {
    public int[] findMode(TreeNode root) {
        TreeNode pre = null;
        Stack<TreeNode> stack = new Stack<>();
        List<Integer> result = new ArrayList<>();
        int maxCount = 0;
        int count = 0;
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()) {
            if (cur != null) {
                stack.push(cur);
                cur =cur.left;
            }else {
                cur = stack.pop();
                // 计数
                if (pre == null || cur.val != pre.val) {
                    count = 1;
                }else {
                    count++;
                }
                // 更新结果
                if (count > maxCount) {
                    maxCount = count;
                    result.clear();
                    result.add(cur.val);
                }else if (count == maxCount) {
                    result.add(cur.val);
                }
                pre = cur;
                cur = cur.right;
            }
        }
        return result.stream().mapToInt(Integer::intValue).toArray();
    }
}

统一迭代法

class Solution {
    public int[] findMode(TreeNode root) {
        int count = 0;
        int maxCount = 0;
        TreeNode pre = null;
        LinkedList<Integer> res = new LinkedList<>();
        Stack<TreeNode> stack = new Stack<>();

        if(root != null)
            stack.add(root);
        
        while(!stack.isEmpty()){
            TreeNode curr = stack.peek();
            if(curr != null){
                stack.pop();
                if(curr.right != null)
                    stack.add(curr.right);
                stack.add(curr);
                stack.add(null);
                if(curr.left != null)
                    stack.add(curr.left);
            }else{
                stack.pop();
                TreeNode temp = stack.pop();
                if(pre == null)
                    count = 1;
                else if(pre != null && pre.val == temp.val)
                    count++;
                else
                    count = 1;
                pre = temp;
                if(count == maxCount)
                    res.add(temp.val);
                if(count > maxCount){
                    maxCount = count;
                    res.clear();
                    res.add(temp.val);
                }
            }
        }
        int[] result = new int[res.size()];
        int i = 0;
        for (int x : res){
            result[i] = x;
            i++;
        }
        return result;    
    }
}

总结

本题在递归法中,我给出了如果是普通二叉树,应该怎么求众数。

知道了普通二叉树的做法时候,我再进一步给出二叉搜索树又应该怎么求众数,这样鲜明的对比,相信会对二叉树又有更深层次的理解了。

在递归遍历二叉搜索树的过程中,还介绍了一个统计最高出现频率元素集合的技巧, 要不然就要遍历两次二叉搜索树才能把这个最高出现频率元素的集合求出来。

为什么没有这个技巧一定要遍历两次呢? 因为要求的是集合,会有多个众数,如果规定只有一个众数,那么就遍历一次稳稳的了。

最后我依然给出对应的迭代法,其实就是迭代法中序遍历的模板加上递归法中中间节点的处理逻辑,分分钟就可以写出来,中间逻辑的代码我都是从递归法中直接粘过来的。

求二叉搜索树中的众数其实是一道简单题,但大家可以发现我写了这么一大篇幅的文章来讲解,主要是为了尽量从各个角度对本题进剖析,帮助大家更快更深入理解二叉树。

需要强调的是 leetcode上的耗时统计是非常不准确的,看个大概就行,一样的代码耗时可以差百分之50以上,所以leetcode的耗时统计别太当回事,知道理论上的效率优劣就行了

26.二叉树的最近公共祖先

力扣题目链接

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

示例 1: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出: 3 解释: 节点 5 和节点 1 的最近公共祖先是节点 3。

示例 2: 输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出: 5 解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉树中。

思路

遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

那么二叉树如何可以自底向上查找呢?

回溯啊,二叉树回溯的过程就是从低到上。

后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。即情况一:

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

递归三部曲:

1.确定递归函数返回值以及参数
需要递归函数返回值,来告诉我们是否找到节点q或者p,那么返回值为bool类型就可以了。

但我们还要返回最近公共节点,可以利用上题目中返回值是TreeNode * ,那么如果遇到p或者q,就把q或者p返回,返回值不为空,就说明找到了q或者p。

代码如下:

public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q)

2.确定终止条件
遇到空的话,因为树都是空了,所以返回空。

那么我们来说一说,如果 root == q,或者 root == p,说明找到 q p ,则将其返回,这个返回值,后面在中节点的处理过程中会用到,那么中节点的处理逻辑,下面讲解。

代码如下:

if (root == null || root == p || root == q) { // 递归结束条件
    return root;
}

3.确定单层递归逻辑
值得注意的是 本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。

之前讲过,递归函数有返回值就是要遍历某一条边,但有返回值也要看如何处理返回值!

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树呢?

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)。
那么为什么要遍历整棵树呢?直观上来看,找到最近公共祖先,直接一路返回就可以了。
如图:

就像图中一样直接返回7。
但事实上还要遍历根节点右子树(即使此时已经找到了目标节点了),也就是图中的节点4、15、20。
因为在如下代码的后序遍历中,如果想利用left和right做逻辑处理, 不能立刻返回,而是要等left与right逻辑处理完之后才能返回。

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

所以此时大家要知道我们要遍历整棵树。知道这一点,对本题就有一定深度的理解了。

那么先用left和right接住左子树和右子树的返回值,代码如下:

TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然。
为什么left为空,right不为空,目标节点通过right返回呢?
如图:

图中节点10的左子树返回null,右子树返回目标值7,那么此时节点10的处理逻辑就是把右子树的返回值(最近公共祖先7)返回上去!

这里也很重要,可能刷过这道题目的同学,都不清楚结果究竟是如何从底层一层一层传到头结点的。

那么如果left和right都为空,则返回left或者right都是可以的,也就是返回空。

那么寻找最小公共祖先,完整流程图如下:

从图中,大家可以看到,我们是如何回溯遍历整棵二叉树,将结果返回给头结点的!

整体代码如下:

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) { // 递归结束条件
            return root;
        }

        // 后序遍历
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);

        if(left == null && right == null) { // 若未找到节点 p 或 q
            return null;
        }else if(left == null && right != null) { // 若找到一个节点
            return right;
        }else if(left != null && right == null) { // 若找到一个节点
            return left;
        }else { // 若找到两个节点
            return root;
        }
    }
}

迭代写法

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        int max = Integer.MAX_VALUE;
        Stack<TreeNode> st = new Stack<>();
        TreeNode cur = root, pre = null;
        while (cur != null || !st.isEmpty()) {
            while (cur != null) {
                st.push(cur);
                cur = cur.left;
            }
            cur = st.pop();
            if (cur.right == null || cur.right == pre) {
                // p/q是 中/左 或者 中/右 , 返回中
                if (cur == p || cur == q) {
                    if ((cur.left != null && cur.left.val == max) || (cur.right != null && cur.right.val == max)) {
                        return cur;
                    }
                    cur.val = max;
                }
                // p/q是 左/右 , 返回中
                if (cur.left != null && cur.left.val == max && cur.right != null && cur.right.val == max) {
                    return cur;
                }
                // MAX_VALUE 往上传递
                if ((cur.left != null && cur.left.val == max) || (cur.right != null && cur.right.val == max)) {
                    cur.val = max;
                }
                pre = cur;
                cur = null;
            } else {
                st.push(cur);
                cur = cur.right;
            }
        }
        return null;
    }
}

总结

这道题目刷过的同学未必真正了解这里面回溯的过程,以及结果是如何一层一层传上去的。

那么我给大家归纳如下三点:

  1. 求最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。
  2. 在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。
  3. 要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果。

可以说这里每一步,都是有难度的,都需要对二叉树,递归和回溯有一定的理解。
本题没有给出迭代法,因为迭代法不适合模拟回溯的过程。理解递归的解法就够了。

27.二叉树周末总结

28.二叉搜索树的最近公共祖先

力扣题目链接

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
  • 输出: 6
  • 解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
  • 输出: 2
  • 解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉搜索树中。

思路

本题是二叉搜索树,二叉搜索树是有序的,那得好好利用一下这个特点。
在有序树里,如果判断一个节点的左子树里有p,右子树里有q呢?
因为是有序树,所以 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的。即 中节点 > p && 中节点 < q 或者 中节点 > q && 中节点 < p。
那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是p 和 q的公共祖先。 那问题来了,一定是最近公共祖先吗?
如图,我们从根节点搜索,第一次遇到 cur节点是数值在[q, p]区间中,即 节点5,此时可以说明 q 和 p 一定分别存在于 节点 5的左子树,和右子树中。

此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为p的祖先, 如果从节点5继续向右遍历则错过成为q的祖先。

所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[q, p]区间中,那么cur就是 q和p的最近公共祖先。

而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)。

如图所示:p为节点6,q为节点9

可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!

递归法

递归三部曲如下:
1.确定递归函数返回值以及参数
参数就是当前节点,以及两个结点 p、q。
返回值是要返回最近公共祖先,所以是TreeNode。

2.确定终止条件
遇到空返回就可以了。其实都不需要这个终止条件,因为题目中说了p、q 为不同节点且均存在于给定的二叉搜索树中。也就是说一定会找到公共祖先的,所以并不存在遇到空的情况。

3.确定单层递归的逻辑
在遍历二叉搜索树的时候就是寻找区间[p.val, q.val](注意这里是左闭又闭)

那么如果 cur.val 大于 p.val,同时 cur.val 大于q.val,那么就应该向左遍历(说明目标区间在左子树上)。

需要注意的是此时不知道p和q谁大,所以两个都要判断
那么整体递归代码如下:

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
        if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
        return root;
    }
}

迭代法

迭代代码如下:

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        while (true) {
            if (root.val > p.val && root.val > q.val) {
                root = root.left;
            } else if (root.val < p.val && root.val < q.val) {
                root = root.right;
            } else {
                break;
            }
        }
        return root;
    }
}

总结

对于二叉搜索树的最近祖先问题,其实要比普通二叉树公共祖先问题简单的多。
不用使用回溯,二叉搜索树自带方向性,可以方便的从上向下查找目标区间,遇到目标区间内的节点,直接返回。
最后给出了对应的迭代法,二叉搜索树的迭代法甚至比递归更容易理解,也是因为其有序性(自带方向性),按照目标区间找就行了。

29.二叉搜索树中的插入操作

力扣题目链接

给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。

提示:

  • 给定的树上的节点数介于 0 和 10^4 之间
  • 每个节点都有一个唯一整数值,取值范围从 0 到 10^8
  • -10^8 <= val <= 10^8
  • 新值和原始二叉搜索树中的任意节点值都不同

思路

这道题目其实是一道简单题目,但是题目中的提示:有多种有效的插入方式,还可以重构二叉搜索树,一下子吓退了不少人,瞬间感觉题目复杂了很多。

其实可以不考虑题目中提示所说的改变树的结构的插入方式

如下中可以看出:只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了。

例如插入元素10 ,需要找到末尾节点插入便可,一样的道理来插入元素15,插入元素0,插入元素6,需要调整二叉树的结构么? 并不需要。。
只要遍历二叉搜索树,找到空节点 插入元素就可以了,那么这道题其实就简单了。
接下来就是遍历二叉搜索树的过程了。

递归

递归三部曲:

1.确定递归函数参数以及返回值
参数就是根节点指针,以及要插入元素,这里递归函数要不要有返回值呢?

可以有,也可以没有,但递归函数如果没有返回值的话,实现是比较麻烦的,下面也会给出其具体实现代码。

有返回值的话,可以利用返回值完成新加入的节点与其父节点的赋值操作。(下面会进一步解释)

递归函数的返回类型为节点类型TreeNode。

2.确定终止条件
终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回。

3.确定单层递归的逻辑
此时要明确,需要遍历整棵树么?

别忘了这是搜索树,遍历整棵搜索树简直是对搜索树的侮辱。

搜索树是有方向了,可以根据插入元素的数值,决定递归方向。

代码如下:

class Solution {
    public TreeNode insertIntoBST(TreeNode root, int val) {
        if (root == null) // 如果当前节点为空,也就意味着val找到了合适的位置,此时创建节点直接返回。
            return new TreeNode(val);
            
        if (root.val < val){
            root.right = insertIntoBST(root.right, val); // 递归创建右子树
        }else if (root.val > val){
            root.left = insertIntoBST(root.left, val); // 递归创建左子树
        }
        return root;
    }
}

迭代

在迭代法遍历的过程中,需要记录一下当前遍历的节点的父节点,这样才能做插入节点的操作。
代码如下:

class Solution {
    public TreeNode insertIntoBST(TreeNode root, int val) {
        if (root == null) return new TreeNode(val);
        TreeNode newRoot = root;
        TreeNode pre = root;
        while (root != null) {
            pre = root;
            if (root.val > val) {
                root = root.left;
            } else if (root.val < val) {
                root = root.right;
            } 
        }
        if (pre.val > val) {
            pre.left = new TreeNode(val);
        } else {
            pre.right = new TreeNode(val);
        }

        return newRoot;
    }
}

总结

首先在二叉搜索树中的插入操作,大家不用恐惧其重构搜索树,其实根本不用重构。

然后在递归中,我们重点讲了如何通过递归函数的返回值完成新加入节点和其父节点的赋值操作,并强调了搜索树的有序性。

最后依然给出了迭代的方法,迭代的方法就需要记录当前遍历节点的父节点了,这个和没有返回值的递归函数实现的代码逻辑是一样的。

30.删除二叉搜索树中的节点

力扣题目链接
给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 O(h),h 为树的高度。
示例:

思路

递归

递归三部曲:
1.确定递归函数参数以及返回值
通过递归返回值删除节点。

2.确定终止条件
遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了

3.确定单层递归的逻辑
这里就把二叉搜索树中删除节点遇到的情况都搞清楚。

有以下五种情况:

  • 第一种情况:没找到删除的节点,遍历到空节点直接返回了
  • 找到删除的节点
    • 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
    • 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
    • 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
    • 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

代码如下:

class Solution {
  public TreeNode deleteNode(TreeNode root, int key) {
    if (root == null){
      return null;
    }
    //寻找对应的对应的前面的节点,以及他的前一个节点
    TreeNode cur = root;
    TreeNode pre = null;
    while (cur != null){
      if (cur.val < key){
        pre = cur;
        cur = cur.right;
      } else if (cur.val > key) {
        pre = cur;
        cur = cur.left;
      }else {
        break;
      }
    }
    if (pre == null){
      return deleteOneNode(cur);
    }
    if (pre.left !=null && pre.left.val == key){
      pre.left = deleteOneNode(cur);
    }
    if (pre.right !=null && pre.right.val == key){
      pre.right = deleteOneNode(cur);
    }
    return root;
  }

  public TreeNode deleteOneNode(TreeNode node){
    if (node == null){
      return null;
    }
    if (node.right == null){
      return node.left;
    }
    TreeNode cur = node.right;
    while (cur.left !=null){
      cur = cur.left;
    }
    cur.left = node.left;
    return node.right;
  }
}

普通二叉树的删除方式(推荐)

这里我在介绍一种通用的删除,普通二叉树的删除方式(没有使用搜索树的特性,遍历整棵树),用交换值的操作来删除目标节点。
代码中目标节点(要删除的节点)被操作了两次:

  • 第一次是和目标节点的右子树最左面节点交换。
  • 第二次直接被NULL覆盖了。

代码如下:

// 解法1(最好理解的版本)
class Solution {
  public TreeNode deleteNode(TreeNode root, int key) {
    if (root == null) return root;
    if (root.val == key) {
      if (root.left == null) {
        return root.right;
      } else if (root.right == null) {
        return root.left;
      } else {
        TreeNode cur = root.right;
        while (cur.left != null) {
          cur = cur.left;
        }
        cur.left = root.left;
        root = root.right;
        return root;
      }
    }
    if (root.val > key) root.left = deleteNode(root.left, key);
    if (root.val < key) root.right = deleteNode(root.right, key);
    return root;
  }
}

迭代法

删除节点的迭代法还是复杂一些的,但其本质我在递归法里都介绍了,最关键就是删除节点的操作(动画模拟的过程)
代码如下:

class Solution {
    public TreeNode deleteNode(TreeNode root, int key) {
        root = delete(root,key);
        return root;
    }

    private TreeNode delete(TreeNode root, int key) {
        if (root == null) return null;

        if (root.val > key) {
            root.left = delete(root.left,key);
        } else if (root.val < key) {
            root.right = delete(root.right,key);
        } else {
            if (root.left == null) return root.right;
            if (root.right == null) return root.left;
            TreeNode tmp = root.right;
            while (tmp.left != null) {
                tmp = tmp.left;
            }
            root.val = tmp.val;
            root.right = delete(root.right,tmp.val);
        }
        return root;
    }
}

总结

读完本篇,大家会发现二叉搜索树删除节点比增加节点复杂的多。

因为二叉搜索树添加节点只需要在叶子上添加就可以的,不涉及到结构的调整,而删除节点操作涉及到结构的调整。

这里我们依然使用递归函数的返回值来完成把节点从二叉树中移除的操作。

这里最关键的逻辑就是第五种情况(删除一个左右孩子都不为空的节点),这种情况一定要想清楚。

递归中我给出了两种写法,推荐大家学会第一种(利用搜索树的特性)就可以了,第二种递归写法其实是比较绕的。

最后我也给出了相应的迭代法,就是模拟递归法中的逻辑来删除节点,但需要一个pre记录cur的父节点,方便做删除操作。

迭代法其实不太容易写出来,所以如果是初学者的话,彻底掌握第一种递归写法就够了。

31.修剪二叉搜索树

力扣题目链接
给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

思路

相信看到这道题目大家都感觉是一道简单题(事实上leetcode上也标明是简单)。

但还真的不简单!

递归法

我们在重新关注一下第二个示例,如图:

在上图中我们发现节点0并不符合区间要求,那么将节点0的右孩子 节点2 直接赋给 节点3的左孩子就可以了(就是把节点0从二叉树中移除),如图:

理解了最关键部分了我们再递归三部曲:

1.确定递归函数的参数以及返回值
这里我们为什么需要返回值呢?

因为是要遍历整棵树,做修改,其实不需要返回值也可以,我们也可以完成修剪(其实就是从二叉树中移除节点)的操作。

但是有返回值,更方便,可以通过递归函数的返回值来移除节点。

2.确定终止条件
修剪的操作并不是在终止条件上进行的,所以就是遇到空节点返回就可以了。
3.确定单层递归的逻辑
如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。
如果root(当前节点)的元素大于high的,那么应该递归左子树,并返回左子树符合条件的头结点。
接下来要将下一层处理完左子树的结果赋给root.left,处理完右子树的结果赋给root.right。

最后返回root节点,代码如下:

class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if (root == null) {
            return null;
        }
        if (root.val < low) {
            return trimBST(root.right, low, high);
        }
        if (root.val > high) {
            return trimBST(root.left, low, high);
        }
        // root在[low,high]范围内
        root.left = trimBST(root.left, low, high);
        root.right = trimBST(root.right, low, high);
        return root;
    }
}

此时大家是不是还没发现这多余的节点究竟是如何从二叉树中移除的呢?

在回顾一下上面的代码,针对下图中二叉树的情况:

相当于把节点0的右孩子(节点2)返回给上一层,相当于用节点3的左孩子 把下一层返回的 节点0的右孩子(节点2) 接住。此时节点3的左孩子就变成了节点2,将节点0从二叉树中移除了。

迭代法

因为二叉搜索树的有序性,不需要使用栈模拟递归的过程。

在剪枝的时候,可以分为三步:

  • 将root移动到[L, R] 范围内,注意是左闭右闭区间
  • 剪枝左子树
  • 剪枝右子树

代码如下:

class Solution {
    //iteration
    public TreeNode trimBST(TreeNode root, int low, int high) {
        if(root == null)
            return null;
        while(root != null && (root.val < low || root.val > high)){
            if(root.val < low)
                root = root.right;
            else
                root = root.left;
        }

        TreeNode curr = root;
        
        //deal with root's left sub-tree, and deal with the value smaller than low.
        while(curr != null){
            while(curr.left != null && curr.left.val < low){
                curr.left = curr.left.right;
            }
            curr = curr.left;
        }
        //go back to root;
        curr = root;

        //deal with root's righg sub-tree, and deal with the value bigger than high.
        while(curr != null){
            while(curr.right != null && curr.right.val > high){
                curr.right = curr.right.left;
            }
            curr = curr.right;
        }
        return root;
    }
}

总结

修剪二叉搜索树其实并不难,但在递归法中大家可看出我费了很大的功夫来讲解如何删除节点的,这个思路其实是比较绕的。

最终的代码倒是很简洁。

如果不对递归有深刻的理解,这道题目还是有难度的!

本题我依然给出递归法和迭代法,初学者掌握递归就可以了,如果想进一步学习,就把迭代法也写一写。

32.将有序数组转换为二叉搜索树

力扣题目链接
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。

本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。

示例:

思路

题目中说要转换为一棵高度平衡二叉搜索树。为什么强调要平衡呢?

因为只要给我们一个有序数组,如果不强调平衡,都可以以线性结构来构造二叉搜索树。
例如 有序数组[-10,-3,0,5,9] 就可以构造成这样的二叉搜索树,如图。

上图中,是符合二叉搜索树的特性吧,如果要这么做的话,是不是本题意义就不大了,所以才强调是平衡二叉搜索树。

其实数组构造二叉树,构成平衡树是自然而然的事情,因为大家默认都是从数组中间位置取值作为节点元素,一般不会随机取。所以想构成不平衡的二叉树是自找麻烦。
构造二叉树本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间。

分割点就是数组中间位置的节点。

那么为问题来了,如果数组长度为偶数,中间节点有两个,取哪一个?

取哪一个都可以,只不过构成了不同的平衡二叉搜索树。

例如:输入:[-10,-3,0,5,9]

如下两棵树,都是这个数组的平衡二叉搜索树:

如果要分割的数组长度为偶数的时候,中间元素为两个,是取左边元素 就是树1,取右边元素就是树2。

这也是题目中强调答案不是唯一的原因。 理解这一点,这道题目算是理解到位了。

递归

递归三部曲:
1.确定递归函数返回值及其参数
删除二叉树节点,增加二叉树节点,都是用递归函数的返回值来完成,这样是比较方便的。
那么本题要构造二叉树,依然用递归函数的返回值来构造中节点的左右孩子。

再来看参数,首先是传入数组,然后就是左下标left和右下标right,在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组。
所以代码如下:

public TreeNode sortedArrayToBST(int[] nums, int left, int right)

我这里定义的是左闭右闭区间,在不断分割的过程中,也会坚持左闭右开的区间,这又涉及到我们讲过的循环不变量。
2.确定递归终止条件
这里定义的是左闭右闭的区间,所以当区间 left > right的时候,就是空节点了。
代码如下:

if (left > right) {
    return null;
}

3.确定单层递归的逻辑
首先取数组中间元素的位置,不难写出int mid = (left + right) / 2;,这么写其实有一个问题,就是数值越界,例如left和right都是最大int,这么操作就越界了,在二分法中尤其需要注意!
所以可以这么写:int mid = left + ((right - left) / 2);
取了中间位置,就开始以中间位置的元素构造节点,代码:TreeNode root = new TreeNode(nums[mid]);。

接着划分区间,root的左孩子接住下一层左区间的构造节点,右孩子接住下一层右区间构造的节点。

最后返回root节点,单层递归整体代码如下:

int mid = left + (right - left) / 2;
TreeNode root = new TreeNode(nums[mid]);
root.left = sortedArrayToBST(nums, left, mid);
root.right = sortedArrayToBST(nums, mid + 1, right);
return root;

这里int mid = left + ((right - left) / 2);的写法相当于是如果数组长度为偶数,中间位置有两个元素,取靠左边的。

递归整体代码如下:
递归: 左闭右开 [left,right)

class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return sortedArrayToBST(nums, 0, nums.length);
    }
    
    public TreeNode sortedArrayToBST(int[] nums, int left, int right) {
        if (left >= right) {
            return null;
        }
        if (right - left == 1) {
            return new TreeNode(nums[left]);
        }
        int mid = left + (right - left) / 2;
        TreeNode root = new TreeNode(nums[mid]);
        root.left = sortedArrayToBST(nums, left, mid);
        root.right = sortedArrayToBST(nums, mid + 1, right);
        return root;
    }
}

递归: 左闭右闭 [left,right]

class Solution {
	public TreeNode sortedArrayToBST(int[] nums) {
		TreeNode root = traversal(nums, 0, nums.length - 1);
		return root;
	}

	// 左闭右闭区间[left, right]
	private TreeNode traversal(int[] nums, int left, int right) {
		if (left > right) return null;

		int mid = left + ((right - left) >> 1);
		TreeNode root = new TreeNode(nums[mid]);
		root.left = traversal(nums, left, mid - 1);
		root.right = traversal(nums, mid + 1, right);
		return root;
	}
}

迭代法

迭代法可以通过三个队列来模拟,一个队列放遍历的节点,一个队列放左区间下标,一个队列放右区间下标。

模拟的就是不断分割的过程,代码如下:

class Solution {
	public TreeNode sortedArrayToBST(int[] nums) {
		if (nums.length == 0) return null;

		//根节点初始化
		TreeNode root = new TreeNode(-1);
		Queue<TreeNode> nodeQueue = new LinkedList<>();
		Queue<Integer> leftQueue = new LinkedList<>();
		Queue<Integer> rightQueue = new LinkedList<>();

		// 根节点入队列
		nodeQueue.offer(root);
		// 0为左区间下标初始位置
		leftQueue.offer(0);
		// nums.size() - 1为右区间下标初始位置
		rightQueue.offer(nums.length - 1);

		while (!nodeQueue.isEmpty()) {
			TreeNode currNode = nodeQueue.poll();
			int left = leftQueue.poll();
			int right = rightQueue.poll();
			int mid = left + ((right - left) >> 1);

			// 将mid对应的元素给中间节点
			currNode.val = nums[mid];

			// 处理左区间
			if (left <= mid - 1) {
				currNode.left = new TreeNode(-1);
				nodeQueue.offer(currNode.left);
				leftQueue.offer(left);
				rightQueue.offer(mid - 1);
			}

			// 处理右区间
			if (right >= mid + 1) {
				currNode.right = new TreeNode(-1);
				nodeQueue.offer(currNode.right);
				leftQueue.offer(mid + 1);
				rightQueue.offer(right);
			}
		}
		return root;
	}
}

总结

本次我们构造平衡二叉搜索树,其实思路也是一样的,不断中间分割,然后递归处理左区间,右区间,也可以说是分治。

此时相信大家应该对通过递归函数的返回值来增删二叉树很熟悉了,这也是常规操作。

在定义区间的过程中我们又一次强调了循环不变量的重要性。

最后依然给出迭代的方法,其实就是模拟取中间元素,然后不断分割去构造二叉树的过程。

33.把二叉搜索树转换为累加树

力扣题目链接
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。

示例 1:

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

树中的节点数介于 0 和 104 之间。
每个节点的值介于 -104 和 104 之间。
树中的所有值 互不相同 。
给定的树为二叉搜索树。

思路

一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后再遍历其他节点累加?怎么一想这么麻烦呢。

然后再发现这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。

那么有序的元素如何求累加呢?

其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。

为什么变成数组就是感觉简单了呢?

因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。

那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了。

递归

遍历顺序如图所示:

本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

1.递归函数参数以及返回值
这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。
同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。
2.确定终止条件
遇空就终止。
3.确定单层递归的逻辑
注意要右中左来遍历二叉树, 中节点的处理逻辑就是让cur的数值加上前一个节点的数值。
递归法整体代码如下:

class Solution {
    int sum;
    public TreeNode convertBST(TreeNode root) {
        sum = 0;
        convertBST1(root);
        return root;
    }

    // 按右中左顺序遍历,累加即可
    public void convertBST1(TreeNode root) {
        if (root == null) {
            return;
        }
        convertBST1(root.right);
        sum += root.val;
        root.val = sum;
        convertBST1(root.left);
    }
}

迭代法

迭代法其实就是中序模板题了,代码如下:

class Solution {
    //DFS iteraion統一迭代法
    public TreeNode convertBST(TreeNode root) {
        int pre = 0;
        Stack<TreeNode> stack = new Stack<>();
        if(root == null) //edge case check
            return null;

        stack.add(root);

        while(!stack.isEmpty()){
            TreeNode curr = stack.peek();
            //curr != null的狀況,只負責存node到stack中
            if(curr != null){ 
                stack.pop();
                if(curr.left != null)       //左
                    stack.add(curr.left);
                stack.add(curr);            //中
                stack.add(null);
                if(curr.right != null)      //右
                    stack.add(curr.right);
            }else{
            //curr == null的狀況,只負責做單層邏輯
                stack.pop();
                TreeNode temp = stack.pop();
                temp.val += pre;
                pre = temp.val;
            }
        }
        return root;
    }
}

34.二叉树总结篇

二叉树的理论基础

要知道二叉树的种类、存储方式、遍历方式、定义方式。

二叉树的遍历方式

深度优先遍历
递归三部曲初次亮相、通过栈模拟递归、二叉树统一迭代法。
广度优先遍历
通过队列模拟。

求二叉树的属性

  • 二叉树:是否对称
    • 递归:后序,比较的是根节点的左子树与右子树是不是相互翻转
    • 迭代:使用队列/栈将两个节点顺序放入容器中进行比较
  • 二叉树:求最大深度
    • 递归:后序,求根节点最大高度就是最大深度,通过递归函数的返回值做计算树的高度
    • 迭代:层序遍历
  • 二叉树:求最小深度
    • 递归:后序,求根节点最小高度就是最小深度,注意最小深度的定义
    • 迭代:层序遍历
  • 二叉树:求有多少个节点
    • 递归:后序,通过递归函数的返回值计算节点数量
    • 迭代:层序遍历
  • 二叉树:是否平衡
    • 递归:后序,注意后序求高度和前序求深度,递归过程判断高度差
    • 迭代:效率很低,不推荐
  • 二叉树:找所有路径
    • 递归:前序,方便让父节点指向子节点,涉及回溯处理根节点到叶子的所有路径
    • 迭代:一个栈模拟递归,一个栈来存放对应的遍历路径
  • 二叉树:递归中如何隐藏着回溯
    • 详解二叉树:找所有路径中递归如何隐藏着回溯
  • 二叉树:求左叶子之和
    • 递归:后序,必须三层约束条件,才能判断是否是左叶子。
    • 迭代:直接模拟后序遍历
  • 二叉树:求左下角的值
    • 递归:顺序无所谓,优先左孩子搜索,同时找深度最大的叶子节点。
    • 迭代:层序遍历找最后一行最左边
  • 二叉树:求路径总和
    • 递归:顺序无所谓,递归函数返回值为bool类型是为了搜索一条边,没有返回值是搜索整棵树。
    • 迭代:栈里元素不仅要记录节点指针,还要记录从头结点到该节点的路径数值总和。

二叉树的修改与构造

  • 翻转二叉树
    • 递归:前序,交换左右孩子
    • 迭代:直接模拟前序遍历
  • 构造二叉树
    • 递归:前序,重点在于找分割点,分左右区间构造
    • 迭代:比较复杂,意义不大
  • 构造最大的二叉树
    • 递归:前序,分割点为数组最大值,分左右区间构造
    • 迭代:比较复杂,意义不大
  • 合并两个二叉树
    • 递归:前序,同时操作两个树的节点,注意合并的规则
    • 迭代:使用队列,类似层序遍历

求二叉搜索树的属性

  • 二叉搜索树中的搜索
    • 递归:二叉搜索树的递归是有方向的
    • 迭代:因为有方向,所以迭代法很简单
  • 是不是二叉搜索树
    • 递归:中序,相当于变成了判断一个序列是不是递增的
    • 迭代:模拟中序,逻辑相同
  • 求二叉搜索树的最小绝对差
    • 递归:中序,双指针操作
    • 迭代:模拟中序,逻辑相同
  • 求二叉搜索树的众数
    • 递归:中序,清空结果集的技巧,遍历一遍便可求众数集合
  • 二叉搜索树转成累加树
    • 递归:中序,双指针操作累加
    • 迭代:模拟中序,逻辑相同

二叉树公共祖先问题

  • 二叉树的公共祖先问题
    • 递归:后序,回溯,找到左子树出现目标值,右子树节点目标值的节点。
    • 迭代:不适合模拟回溯
  • 二叉搜索树的公共祖先问题
    • 递归:顺序无所谓,如果节点的数值在目标区间就是最近公共祖先
    • 迭代:按序遍历

二叉搜索树的修改与构造

  • 二叉搜索树中的插入操作
    • 递归:顺序无所谓,通过递归函数返回值添加节点
    • 迭代:按序遍历,需要记录插入父节点,这样才能做插入操作
  • 二叉搜索树中的删除操作
    • 递归:前序,想清楚删除非叶子节点的情况
    • 迭代:有序遍历,较复杂
  • 修剪二叉搜索树
    • 递归:前序,通过递归函数返回值删除节点
    • 迭代:有序遍历,较复杂
  • 构造二叉搜索树
    • 递归:前序,数组中间节点分割
    • 迭代:较复杂,通过三个队列来模拟

最后总结

在二叉树题目选择什么遍历顺序是不少同学头疼的事情,我们做了这么多二叉树的题目了,给大家大体分分类。

  • 涉及到二叉树的构造,无论普通二叉树还是二叉搜索树一定前序,都是先构造中节点。
  • 求普通二叉树的属性,一般是后序,一般要通过递归函数的返回值做计算。
  • 求二叉搜索树的属性,一定是中序了,要不白瞎了有序性了。

注意在普通二叉树的属性中,我用的是一般为后序,例如单纯求深度就用前序,二叉树:找所有路径也用了前序,这是为了方便让父节点指向子节点。
所以求普通二叉树的属性还是要具体问题具体分析。
二叉树专题汇聚为一张图:

posted @ 2024-09-08 13:04  蜘蛛zhttty  阅读(33)  评论(0)    收藏  举报