15、Spark Streaming源码解读之No Receivers彻底思考
在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Approach)的方式,No Receiver的方式的优势:
1. 更强的控制自由度
2. 语义一致性
其实No Receivers的方式更符合我们读取数据,操作数据的思路的。因为Spark 本身是一个计算框架,他底层会有数据来源,如果没有Receivers,我们直接操作数据来源,这其实是一种更自然的方式。 如果要操作数据来源,肯定要有一个封装器,这个封装器一定是RDD类型。 以直接访问Kafka中的数据为例,看一下源码中直接读写Kafka中数据的例子代码:
object DirectKafkaWordCount {def main(args: Array[String]) {if (args.length < 2) {System.err.println(s"""|Usage: DirectKafkaWordCount <brokers> <topics>| <brokers> is a list of one or more Kafka brokers| <topics> is a list of one or more kafka topics to consume from|""".stripMargin)System.exit(1)}StreamingExamples.setStreamingLogLevels()val Array(brokers, topics) = args// Create context with 2 second batch intervalval sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")val ssc = new StreamingContext(sparkConf, Seconds(2))// Create direct kafka stream with brokers and topicsval topicsSet = topics.split(",").toSetval kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)// Get the lines, split them into words, count the words and printval lines = messages.map(_._2)val words = lines.flatMap(_.split(" "))val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)wordCounts.print()// Start the computationssc.start()ssc.awaitTermination()}}
Spark streaming 会将数据源封装成一个RDD,也就是KafkaRDD:
/*** A batch-oriented interface for consuming from Kafka.* Starting and ending offsets are specified in advance,* so that you can control exactly-once semantics.* @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">* configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers" to be set* with Kafka broker(s) specified in host1:port1,host2:port2 form.* @param offsetRanges offset ranges that define the Kafka data belonging to this RDD* @param messageHandler function for translating each message into the desired type*/private[kafka]class KafkaRDD[K: ClassTag,V: ClassTag,U <: Decoder[_]: ClassTag,T <: Decoder[_]: ClassTag,R: ClassTag] private[spark] (sc: SparkContext,kafkaParams: Map[String, String],val offsetRanges: Array[OffsetRange], //该RDD的数据偏移量leaders: Map[TopicAndPartition, (String, Int)],messageHandler: MessageAndMetadata[K, V] => R) extends RDD[R](sc, Nil) with Logging with HasOffsetRanges
可以看到KafkaRDD 混入了HasOffsetRanges,它是一个trait:
trait HasOffsetRanges {def offsetRanges: Array[OffsetRange]}
其中OffsetRange,标识了RDD的数据的主题、分区、开始偏移量和结束偏移量:
inal class OffsetRange private(val topic: String,val partition: Int,val fromOffset: Long,val untilOffset: Long) extends Serializable
回到KafkaRDD,看一下KafkaRDD的getPartitions方法:
override def getPartitions: Array[Partition] = {offsetRanges.zipWithIndex.map { case (o, i) =>val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)}.toArray}
返回KafkaRDDPartition:
private[kafka]class KafkaRDDPartition(val index: Int,val topic: String,val partition: Int,val fromOffset: Long,val untilOffset: Long,val host: String,val port: Int) extends Partition {/** Number of messages this partition refers to */def count(): Long = untilOffset - fromOffset}
override def compute(thePart: Partition, context: TaskContext): Iterator[R] = {val part = thePart.asInstanceOf[KafkaRDDPartition]assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part))if (part.fromOffset == part.untilOffset) {log.info(s"Beginning offset ${part.fromOffset} is the same as ending offset " +s"skipping ${part.topic} ${part.partition}")Iterator.empty} else {new KafkaRDDIterator(part, context)}}
KafkaRDD的compute方法返回了KafkaIterator对象:
private class KafkaRDDIterator(part: KafkaRDDPartition,context: TaskContext) extends NextIterator[R] {context.addTaskCompletionListener{ context => closeIfNeeded() }log.info(s"Computing topic ${part.topic}, partition ${part.partition} " +s"offsets ${part.fromOffset} -> ${part.untilOffset}")val kc = new KafkaCluster(kafkaParams)val keyDecoder = classTag[U].runtimeClass.getConstructor(classOf[VerifiableProperties]).newInstance(kc.config.props).asInstanceOf[Decoder[K]]val valueDecoder = classTag[T].runtimeClass.getConstructor(classOf[VerifiableProperties]).newInstance(kc.config.props).asInstanceOf[Decoder[V]]val consumer = connectLeadervar requestOffset = part.fromOffsetvar iter: Iterator[MessageAndOffset] = null- //..................
- }
KafkaIterator中创建了一个KakfkaCluster对象用于与Kafka集群进行交互,获取数据。
回到开头的例子,我们使用 KafkaUtils.createDirectStream 创建了InputDStream:
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
看一下createDirectStream源码:
def createDirectStream[K: ClassTag,V: ClassTag,KD <: Decoder[K]: ClassTag,VD <: Decoder[V]: ClassTag] (ssc: StreamingContext,kafkaParams: Map[String, String],topics: Set[String]): InputDStream[(K, V)] = {val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)- //创建KakfaCluster对象
val kc = new KafkaCluster(kafkaParams)- //更具kc的信息获取数据偏移量
val fromOffsets = getFromOffsets(kc, kafkaParams, topics)new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](ssc, kafkaParams, fromOffsets, messageHandler)}
首先通过KafkaCluster从Kafka集群获取信息,创建DirectKafkaInputDStream对象返回
DirectKafkaInputDStream的compute方法源码:
override def compute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = {//计算最近的数据终止偏移量val untilOffsets = clamp(latestLeaderOffsets(maxRetries))- //利用数据的偏移量创建KafkaRDD
val rdd = KafkaRDD[K, V, U, T, R](context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler)// Report the record number and metadata of this batch interval to InputInfoTracker.val offsetRanges = currentOffsets.map { case (tp, fo) =>val uo = untilOffsets(tp)OffsetRange(tp.topic, tp.partition, fo, uo.offset)}val description = offsetRanges.filter { offsetRange =>// Don't display empty ranges.offsetRange.fromOffset != offsetRange.untilOffset}.map { offsetRange =>s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" +s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"}.mkString("\n")// Copy offsetRanges to immutable.List to prevent from being modified by the userval metadata = Map("offsets" -> offsetRanges.toList,StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)val inputInfo = StreamInputInfo(id, rdd.count, metadata)ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset)Some(rdd)}
可以看到DirectKafkaInputDStream的compute方法中,首先从Kafka集群获取数据的偏移量,然后利用获取偏移量创建RDD,这个Receiver的RDD创建方式不同
浙公网安备 33010602011771号