随笔分类 -  《PyTorch深度学习实践》刘二大人 代码合集

摘要:1 ''' 2 input hello 3 output ohlol use RNNcell 4 ''' 5 import torch 6 7 input_size=4 8 hidden_size=4 9 batch_size=1 10 # 准备数据 11 idx2char=['e','h','l' 阅读全文
posted @ 2022-10-24 22:25 silvan_happy 阅读(179) 评论(0) 推荐(0)
摘要:同样的参数,CPU跑15min,GPU 2min43s 1 #根据地名分辨国家 2 import math 3 import time 4 import torch 5 # 绘图 6 import matplotlib.pyplot as plt 7 import numpy as np 8 # 读 阅读全文
posted @ 2022-10-24 22:22 silvan_happy 阅读(352) 评论(0) 推荐(0)
摘要:CNN用于图像识别 最后accuracy on test set:98% 1 import torch 2 import torch.nn as nn 3 from torchvision import transforms 4 from torchvision import datasets 5 阅读全文
posted @ 2022-10-23 22:58 silvan_happy 阅读(103) 评论(0) 推荐(0)
摘要:课堂练习: 1 import torch 2 from torchvision import transforms 3 from torchvision import datasets 4 from torch.utils.data import DataLoader 5 import torch. 阅读全文
posted @ 2022-10-23 17:14 silvan_happy 阅读(135) 评论(0) 推荐(0)
摘要:课堂练习,课后作业不想做了…… 1 import torch 2 from torchvision import transforms 3 from torchvision import datasets 4 from torch.utils.data import DataLoader 5 imp 阅读全文
posted @ 2022-10-23 15:48 silvan_happy 阅读(136) 评论(0) 推荐(0)
摘要:课堂练习: 1 import torch 2 import numpy as np 3 from torch.utils.data import Dataset 4 from torch.utils.data import DataLoader 5 6 # prepare dataset 7 cla 阅读全文
posted @ 2022-10-23 15:42 silvan_happy 阅读(206) 评论(0) 推荐(0)
摘要:1 import numpy as np 2 import torch 3 import matplotlib.pyplot as plt 4 import os 5 os.environ['KMP_DUPLICATE_LIB_OK']='True' 6 7 #1 prepare dataset 8 阅读全文
posted @ 2022-10-22 15:49 silvan_happy 阅读(114) 评论(0) 推荐(0)
摘要:1 import torch 2 import torch.nn.functional as F 3 4 # 1prepare dataset 5 x_data = torch.Tensor([[1.0], [2.0], [3.0]]) 6 y_data = torch.Tensor([[0], [ 阅读全文
posted @ 2022-10-20 19:57 silvan_happy 阅读(214) 评论(0) 推荐(0)
摘要:1 import torch 2 3 # 1prepare dataset 4 # x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征 5 x_data = torch.tensor([[1.0], [2.0], [3.0]]) 6 y_data = torch.tensor([[ 阅读全文
posted @ 2022-10-20 19:57 silvan_happy 阅读(112) 评论(0) 推荐(0)
摘要:1 import torch 2 from matplotlib import pyplot as plt 3 import os 4 os.environ['KMP_DUPLICATE_LIB_OK']='True' 5 6 x_data = [1.0, 2.0, 3.0] 7 y_data = 阅读全文
posted @ 2022-10-20 19:55 silvan_happy 阅读(162) 评论(0) 推荐(0)
摘要:#梯度下降法 from matplotlib import pyplot as plt # prepare the training set x_data = [1.0, 2.0, 3.0] y_data = [2.0, 4.0, 6.0] # initial guess of weight w = 阅读全文
posted @ 2022-10-19 19:22 silvan_happy 阅读(122) 评论(0) 推荐(0)
摘要:刘二大人的Pytorch保姆式教程。 我觉得算0基础学Pytorch吧,从我现在的基础看就是比较easy的程度,正和我意~ 课堂练习: import numpy as np import matplotlib.pyplot as plt x_data = [1.0, 2.0, 3.0] y_data 阅读全文
posted @ 2022-10-19 08:36 silvan_happy 阅读(226) 评论(0) 推荐(0)
摘要:下面三种需求都是可以尝试的: 错误1: AssertionError: Torch not compiled with CUDA enabled 错误2: torch.cuda.is_available() 输出false 需求3: 就是想安装Pytorch 请锁死下面的博客!!!试了也就几十个博客 阅读全文
posted @ 2022-10-18 19:50 silvan_happy 阅读(75) 评论(0) 推荐(0)