USACO Section 3.2 Factorials(n!求最右边非零数)
The factorial of an integer N, written N!, is the product of all the integers from 1 through N inclusive. The factorial quickly becomes very large: 13! is too large to store in a 32-bit integer on most computers, and 70! is too large for most floating-point variables. Your task is to find the rightmost non-zero digit of n!. For example, 5! = 1 * 2 * 3 * 4 * 5 = 120, so the rightmost non-zero digit of 5! is 2. Likewise, 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040, so the rightmost non-zero digit of 7! is 4.
PROGRAM NAME: fact4
INPUT FORMAT
A single positive integer N no larger than 4,220.
SAMPLE INPUT (file fact4.in)
7
OUTPUT FORMAT
A single line containing but a single digit: the right most non-zero digit of N! .
SAMPLE OUTPUT (file fact4.out)
4
题意:求n!的最右边那个非0数字。
View Code
/* ID: dizzy_l1 LANG: C++ TASK: fact4 */ #include<iostream> #include<cstdio> using namespace std; int main() { freopen("fact4.in","r",stdin); freopen("fact4.out","w",stdout); int n,i,ans,t; while(scanf("%d",&n)==1) { ans=1; for(i=2;i<=n;i++) { ans*=i; t=ans%10; while(t==0) { ans=ans/10; t=ans%10; } ans=ans%10000;//不能直接模10,n=15就过不了 } ans=ans%10; printf("%d\n",ans); } return 0; }


浙公网安备 33010602011771号