kafkaspout以及kafkabolt的最简实例
这个实例中有一个KafkaSpout,一个KafkaBolt,一个自定义Bolt QueryBolt。数据流程是KafkaSpout从topic为recommend的消息队列中取出String类型的消息,发送给QueryBolt。QueryBolt不做任何处理,直接转发给KafkaBolt,只把经过的消息存储在list。QueryBolt中自定义了cleanup方法,该方法在topology被杀死时调用,方法中把list中的所有数据打印在"C://"+this+".txt"文件中。KafkaBolt将接收到的数据直接转存在主题为recevier的kafka消息队列中。
然后是MessageScheme.java
最后是QueryBolt.java
问题1:zkRoot如何设置?非常重要,设置错误无法正确从kafka消息队列中取出数据。
代码结构:

以下是详细代码:
首先是topology.java
import java.util.HashMap;import java.util.Map;import backtype.storm.Config;import backtype.storm.LocalCluster;//import backtype.storm.LocalCluster;import backtype.storm.StormSubmitter;import backtype.storm.spout.SchemeAsMultiScheme;import backtype.storm.topology.TopologyBuilder;import storm.kafka.BrokerHosts;import storm.kafka.KafkaSpout;import storm.kafka.SpoutConfig;import storm.kafka.ZkHosts;import storm.kafka.bolt.KafkaBolt;public class topology { public static void main(String [] args) throws Exception{ //配置zookeeper 主机:端口号 BrokerHosts brokerHosts =new ZkHosts("110.64.76.130:2181,110.64.76.131:2181,110.64.76.132:2181"); //接收消息队列的主题 String topic="recommend"; //zookeeper设置文件中的配置,如果zookeeper配置文件中设置为主机名:端口号 ,该项为空 String zkRoot=""; //任意 String spoutId="zhou"; SpoutConfig spoutConfig=new SpoutConfig(brokerHosts, topic, zkRoot, spoutId); //设置如何处理kafka消息队列输入流 spoutConfig.scheme=new SchemeAsMultiScheme(new MessageScheme()); Config conf=new Config(); //不输出调试信息 conf.setDebug(false); //设置一个spout task中处于pending状态的最大的tuples数量 conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1); Map<String, String> map=new HashMap<String,String>(); // 配置Kafka broker地址 map.put("metadata.broker.list", "master:9092,slave1:9092,slave2:9092"); // serializer.class为消息的序列化类 map.put("serializer.class", "kafka.serializer.StringEncoder"); conf.put("kafka.broker.properties", map); // 配置KafkaBolt生成的topic conf.put("topic", "receiver"); TopologyBuilder builder =new TopologyBuilder(); builder.setSpout("spout", new KafkaSpout(spoutConfig),1); builder.setBolt("bolt1", new QueryBolt(),1).setNumTasks(1).shuffleGrouping("spout"); builder.setBolt("bolt2", new KafkaBolt<String, String>(),1).setNumTasks(1).shuffleGrouping("bolt1"); if(args.length==0){ LocalCluster cluster = new LocalCluster(); //提交本地集群 cluster.submitTopology("test", conf, builder.createTopology()); //等待6s之后关闭集群 Thread.sleep(6000); //关闭集群 cluster.shutdown(); } StormSubmitter.submitTopology("test", conf, builder.createTopology()); }}import java.io.UnsupportedEncodingException;import java.util.List;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import backtype.storm.spout.Scheme;import backtype.storm.tuple.Fields;import backtype.storm.tuple.Values;public class MessageScheme implements Scheme { private static final Logger LOGGER = LoggerFactory.getLogger(MessageScheme.class); public List<Object> deserialize(byte[] ser) { try { //从kafka中读取的值直接序列化为UTF-8的str String mString=new String(ser, "UTF-8"); return new Values(mString); } catch (UnsupportedEncodingException e) { // TODO Auto-generated catch block LOGGER.error("Cannot parse the provided message"); } return null; } public Fields getOutputFields() { // TODO Auto-generated method stub return new Fields("msg"); }}import java.io.FileNotFoundException;import java.io.FileOutputStream;import java.io.IOException;import java.io.PrintStream;import java.util.ArrayList;import java.util.List;import java.util.Map;import java.util.Vector;import backtype.storm.task.OutputCollector;import backtype.storm.task.TopologyContext;import backtype.storm.topology.IRichBolt;import backtype.storm.topology.OutputFieldsDeclarer;import backtype.storm.tuple.Fields;import backtype.storm.tuple.Tuple;import backtype.storm.tuple.Values;public class QueryBolt implements IRichBolt { List<String> list; OutputCollector collector; public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { list=new ArrayList<String>(); this.collector=collector; } public void execute(Tuple input) { // TODO Auto-generated method stub String str=(String) input.getValue(0); //将str加入到list list.add(str); //发送ack collector.ack(input); //发送该str collector.emit(new Values(str)); } public void cleanup() {//topology被killed时调用 //将list的值写入到文件 try { FileOutputStream outputStream=new FileOutputStream("C://"+this+".txt"); PrintStream p=new PrintStream(outputStream); p.println("begin!"); p.println(list.size()); for(String tmp:list){ p.println(tmp); } p.println("end!"); try { p.close(); outputStream.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("message")); } public Map<String, Object> getComponentConfiguration() { // TODO Auto-generated method stub return null; }}观察 server.properties 文件:
zookeeper.connect=master:2181,slave1:2181,slave2:2181
此时zkRoot="";
如果zookeeper.connect=master:2181,slave1:2181,slave2:2181/ok
此时zkRoot等于"/ok"
问题2:为什么KafkaSpout启动之后,不能从头开始读起,而是自动跳过了kafka消息队列之前的内容,只处理KafkaSpout启动之后消息队列中新增的值?
因为KafkaSpout默认跳过了Kafka消息队列之前就存在的值,如果要从头开始处理,那么需要设置spoutConfig.forceFromStart=true,即从offset最小的开始读起。
附录:KafkaSpout中关于 SpoutConfig的相关定义
SpoutConfig继承自KafkaConfig。由于SpoutConfig和KafkaConfig所有的instance field全是public, 因此在使用构造方法后,可以直接设置各个域的值。public class SpoutConfig extends KafkaConfig implements Serializable { public List<String> zkServers = null; //记录Spout读取进度所用的zookeeper的host public Integer zkPort = null;//记录进度用的zookeeper的端口 public String zkRoot = null;//进度信息记录于zookeeper的哪个路径下 public String id = null;//进度记录的id,想要一个新的Spout读取之前的记录,应把它的id设为跟之前的一样。 public long stateUpdateIntervalMs = 2000;//用于metrics,多久更新一次状态。 public SpoutConfig(BrokerHosts hosts, String topic, String zkRoot, String id) { super(hosts, topic); this.zkRoot = zkRoot; this.id = id; }}public class KafkaConfig implements Serializable { public final BrokerHosts hosts; //用以获取Kafka broker和partition的信息 public final String topic;//从哪个topic读取消息 public final String clientId; // SimpleConsumer所用的client id public int fetchSizeBytes = 1024 * 1024; //发给Kafka的每个FetchRequest中,用此指定想要的response中总的消息的大小 public int socketTimeoutMs = 10000;//与Kafka broker的连接的socket超时时间 public int fetchMaxWait = 10000; //当服务器没有新消息时,消费者会等待这些时间 public int bufferSizeBytes = 1024 * 1024;//SimpleConsumer所使用的SocketChannel的读缓冲区大小 public MultiScheme scheme = new RawMultiScheme();//从Kafka中取出的byte[],该如何反序列化 public boolean forceFromStart = false;//是否强制从Kafka中offset最小的开始读起 public long startOffsetTime = kafka.api.OffsetRequest.EarliestTime();//从何时的offset时间开始读,默认为最旧的offset public long maxOffsetBehind = 100000;//KafkaSpout读取的进度与目标进度相差多少,相差太多,Spout会丢弃中间的消息 public boolean useStartOffsetTimeIfOffsetOutOfRange = true;//如果所请求的offset对应的消息在Kafka中不存在,是否使用startOffsetTime public int metricsTimeBucketSizeInSecs = 60;//多长时间统计一次metrics public KafkaConfig(BrokerHosts hosts, String topic) { this(hosts, topic, kafka.api.OffsetRequest.DefaultClientId()); } public KafkaConfig(BrokerHosts hosts, String topic, String clientId) { this.hosts = hosts; this.topic = topic; this.clientId = clientId; }}
我的github:
https://github.com/zhoudayang

浙公网安备 33010602011771号