yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640# 从预先训练的*.pt模型开始训练
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640# 从YAML中构建一个新的模型,将预训练的权重传递给它,并开始训练
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.yaml') # 从YAML中构建一个新模型
model = YOLO('yolov8n.pt') #加载预训练的模型(推荐用于训练)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # 从YAML构建并传递权重# Train the model
model.train(data='coco128.yaml', epochs=100, imgsz=640)
model 传入的model.yaml文件或者model.pt文件,用于构建网络和初始化,不同点在于只传入yaml文件的话参数会随机初始化
data 训练数据集的配置yaml文件
epochs 训练轮次,默认100
patience 早停训练观察的轮次,默认50,如果50轮没有精度提升,模型会直接停止训练
batch 训练批次,默认16
imgsz 训练图片大小,默认640
save 保存训练过程和训练权重,默认开启
save_period 训练过程中每x个轮次保存一次训练模型,默认-1(不开启)
cache 是否采用ram进行数据载入,设置True会加快训练速度,但是这个参数非常吃内存,一般服务器才会设置
device 要运行的设备,即cuda device =0或Device =0,1,2,3或device = cpu
workers 载入数据的线程数。windows一般为4,服务器可以大点,windows上这个参数可能会导致线程报错,发现有关线程报错,可以尝试减少这个参数,这个参数默认为8,大部分都是需要减少的
project 项目文件夹的名,默认为runs
name 用于保存训练文件夹名,默认exp,依次累加
exist_ok 是否覆盖现有保存文件夹,默认Flase
pretrained 是否加载预训练权重,默认Flase
optimizer 优化器选择,默认SGD,可选[SGD、Adam、AdamW、RMSProP]
verbose 是否打印详细输出
seed 随机种子,用于复现模型,默认0
deterministic 设置为True,保证实验的可复现性
single_cls 将多类数据训练为单类,把所有数据当作单类训练,默认Flase
image_weights 使用加权图像选择进行训练,默认Flase
rect 使用矩形训练,和矩形推理同理,默认False
cos_lr 使用余弦学习率调度,默认Flase
close_mosaic 最后x个轮次禁用马赛克增强,默认10
resume 断点训练,默认Flase
lr0 初始化学习率,默认0.01
lrf 最终学习率,默认0.01
label_smoothing 标签平滑参数,默认0.0
dropout 使用dropout正则化(仅对训练进行分类),默认0.0
-
模型导出
from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained# Export the model
model.export(format='onnx')
format 导出的格式,默认’torchscript’,可选如上支持的格式 onnx、engine、openvino等
imgsz 导出时固定的图片推理大小,为标量或(h, w)列表,即(640,480) ,默认640
keras 使用Keras导出TF SavedModel ,用于部署tensorflow模型,默认False
optimize 是否针对移动端对TorchScript进行优化
half fp16量化导出,默认False
int8 int8量化导出,默认False
dynamic 针对ONNX/TF/TensorRT:动态推理,默认False
simplify onnx simplify简化,默认False
opset onnx的Opset版本(可选,默认为最新)
workspace TensorRT:工作空间大小(GB),默认4
nms 导出CoreML,添加NMS
-
推理参数
from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image# 目标检测后处理
boxes = results[0].boxes
boxes.xyxy # box with xyxy format, (N, 4)
boxes.xywh # box with xywh format, (N, 4)
boxes.xyxyn # box with xyxy format but normalized, (N, 4)
boxes.xywhn # box with xywh format but normalized, (N, 4)
boxes.conf # confidence score, (N, 1)
boxes.cls # cls, (N, 1)
boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes .# 实例分割后处理
masks = results[0].masks # Masks object
masks.segments # bounding coordinates of masks, List[segment] * N
masks.data # raw masks tensor, (N, H, W) or masks.masks # 目标分类后处理
results = model(inputs)
results[0].probs # cls prob, (num_class, )
source 跟之前的yolov5一致,可以输入图片路径,图片文件夹路径,视频路径
save 保存检测后输出的图像,默认False
conf 用于检测的对象置信阈值,默认0.25
iou 用于nms的IOU阈值,默认0.7,在模型将它们视为同一对象之前,多个对象之间的重叠量。默认情况下,它设置为 0.5,这意味着重叠超过 50% 的对象将被视为同一对象。
half FP16推理,默认False
device 要运行的设备,即cuda设备=0/1/2/3或设备=cpu
show 用于推理视频过程中展示推理结果,默认False
save_txt 是否把识别结果保存为txt,默认False
save_conf 保存带有置信度分数的结果 ,默认False
save_crop 保存带有结果的裁剪图像,默认False
hide_label 保存识别的图像时候是否隐藏label ,默认False
hide_conf 保存识别的图像时候是否隐藏置信度,默认False
vid_stride 视频检测中的跳帧帧数,默认1
classes 展示特定类别的,根据类过滤结果,即class=0,或class=[0,2,3]
line_thickness 目标框中的线条粗细大小 ,默认3
visualize 可视化模型特征 ,默认False
augment 是否使用数据增强,默认False
agnostic_nms 是否采用class-agnostic NMS,默认False,出现2个框的时候。将 agnostic_nms=True,就只剩一个框了
retina_masks 使用高分辨率分割掩码,默认False
max_det 单张图最大检测目标,默认300
box 在分割人物中展示box信息,默认True