26年佛山一模第19题 圆锥曲线定点定值问题
专题:圆锥曲线 \(\qquad \qquad \qquad \qquad\) 题型:定点定值问题 \(\qquad \qquad \qquad \qquad\) 难度系数:★★★★★
【题目】
(26年佛山一模第19题)
已知点\(A(2,3)\),\(B(2,1)\),双曲线\(C:\dfrac{x^2}{a^2} -\dfrac{y^2}{b^2} =1(a>0,b>0)\)的一条渐近线方程是\(y=x\),直线\(AB\)被\(C\)截得的弦长为\(2\sqrt{3}\).
(1) 求\(C\)的方程;
(2) 已知\(P\),\(Q\)是\(C\)的右支上不同的两点,且存在实数\(λ\),使得\(\overrightarrow{AP}=λ\overrightarrow{AQ}\).
(i) 若点\(D\)满足\(\overrightarrow{PD}=λ\overrightarrow{DQ}\),求证:点\(D\)总在某定直线上.
(ii) 若直线\(PB\)与\(C\)的另一个交点为\(R\)(异于\(Q\)),求证:直线\(QR\)过定点,并求出该定点的坐标.
【解答】
第一问
\(∵\)一条渐近线为\(y=x\),\(∴a=b\)①,
\(∵\)直线\(AB\)被\(C\)截得的弦长为\(2\sqrt{3}\),\(∴\)点\((2,\sqrt{3})\)在双曲线上,
\(∴\dfrac{4}{a^2}-\dfrac{3}{b^2} =1\)②,
由①②解得\(a=b=1\),
所以\(C\)的方程为\(x^2-y^2=1\);
第二问第1小问

方法1
思路:要证明点\(D\)总在某定直线上,可尝试求出动点\(D(x_0,y_0)\)的轨迹方程,即得到关于\(x_0,y_0\)的等式.
设点\(P(x_1,y_1)\),\(Q(x_2,y_2)\),\(D(x_0,y_0)\),
设直线\(PQ\)的方程为\(x=m(y-3)+2\),
(设为横截式比点斜式会更好,避免分离讨论)
联立\(x^2-y^2=1\),得\((m^2-1) y^2+(4m-6m^2 )y+9m^2-12m+3=0\),
(严格来说,要根据\(∆>0\)求出\(m\)的取值范围,但该问并不是真的求动点\(D\)的轨迹方程,而只需要是否在一直线上,故不求出\(m\)的取值范围也可以)
\(∴y_1+y_2=\dfrac{6m^2-4m}{m^2-1}\),\(y_1 y_2=\dfrac{9m^2-12m+3}{m^2-1}\),
\(∵\overrightarrow{AP}=λ\overrightarrow{AQ}\),\(\overrightarrow{PD}=λ\overrightarrow{DQ}\),
\(∴(x_1-2,y_1-3)=λ(x_2-2,y_2-3)\),\((x_0-x_1,y_0-y_1 )=λ(x_0-x_2,y_0-y_2 )\),
(遇到向量关系,利用坐标表示是最直接简洁的想法)
\(∴λ=\dfrac{y_1-3}{y_2-3}\),\(λ=\dfrac{y_0-y_1}{y_0-y_2}\),
\(∴y_0=\dfrac{y_1+λy_2}{1+λ}=\dfrac{y_1+y_2\cdot \dfrac{y_1-3}{y_2-3}}{1+\dfrac{y_1-3}{y_2-3}}=\dfrac{2y_1 y_2-3(y_1+y_2)}{y_1+y_2-6}\)\(=\dfrac{2\cdot \dfrac{9m^2-12m+3}{m^2-1}-3\cdot \dfrac{6m^2-4m}{m^2-1}}{\dfrac{6m^2-4m}{m^2-1}-6}=\dfrac{6-12m}{6-4m}=3+\dfrac{6}{2m-3}\),
(分离常数法,为后面消参作准备)
又\(∵x_0=m(y_0-3)+2=5+\dfrac{9}{2m-3}\),
(其实得到了动点\(D\)的参数方程\(\left\{
\begin{array}{c}
x_0=5+\dfrac{9}{2m-3}\\
y_0=3+\dfrac{6}{2m-3}
\end{array}
\right.
\),消参\(m\)便可得到轨迹方程)
\(∴\dfrac{x_0-5}{9}=\dfrac{y_0-3}{6}\),即\(2x_0-3y_0-1=0\),
\(∴\)点\(D\)总在定直线\(2x-3y-1=0\)上;
方法2
来自其他老师解法
设点\(P(x_1,y_1)\),\(Q(x_2,y_2)\),\(D(x_0,y_0)\),
\(∵\overrightarrow{AP}=λ\overrightarrow{AQ}\),\(∴\overrightarrow{PA}= -λ\overrightarrow{AQ}\),
\(∴\left\{
\begin{array}{c}
2=\dfrac{x_1-λx_2}{1-λ}\\
3=\dfrac{y_1-λy_2}{1-λ}
\end{array}
\right.
\),
\(∵\overrightarrow{PD}=λ\overrightarrow{DQ}\),
\(∴\left\{
\begin{array}{c}
x_0=\dfrac{x_1+λx_2}{1+λ}\\
y_0=\dfrac{y_1+λy_2}{1+λ}
\end{array}
\right.
\),
(用到定比分点坐标公式:若点\(A(x_1,y_1)\),\(B(x_2,y_2)\),\(\overrightarrow{AM} =λ\overrightarrow{MB}\),则点\(M\)的坐标为\(\left(\dfrac{x_1+λx_2}{1+λ},\dfrac{y_1+λy_2}{1+λ}\right)\))
\(∵P、Q\)在双曲线\(x^2-y^2=1\)上,
\(∴\left\{
\begin{array}{c}
x_1^2-y_1^2=1\\
x_2^2-y_2^2=1
\end{array}
\right.
\),
由\(①-λ^2②\)得\(x_1^2-λ^2 x_2^2-(y_1^2-λ^2 y_2^2 )=1-λ^2\),
\(∴2x_0-3y_0=\dfrac{x_1-λx_2}{1-λ}\cdot \dfrac{x_1+λx_2}{1+λ}-\dfrac{y_1-λy_2}{1-λ}\cdot \dfrac{y_1+λy_2}{1+λ}=\dfrac{x_1^2-λ^2 x_2^2-(y_1^2-λ^2 y_2^2}{1-λ^2}=1\),
\(∴\)点\(D\)总在定直线\(2x-3y-1=0\)上;
(解法过于巧妙,不如方法1来得自然)
方法3
从第2小问感觉到,该题应该存在一定的背景的,所以想找到其内在规律,避开大量的计算;
尝试用几何的方法处理,由\(\overrightarrow{AP}=λ\overrightarrow{AQ}\),\(\overrightarrow{PD}=λ\overrightarrow{DQ}⟹λ=\dfrac{|AP|}{|AQ|}=\dfrac{|DP|}{|DQ|}\),想到了相似三角形或四点共圆再用圆幂定理.
连接\(BP\),过点\(Q\)作\(QE||BP\)交直线\(AB\)于\(E\),交直线\(BD\)于点\(F\),
设\(E(2,y_E)\),\(P(x_1,y_1)\),\(Q(x_2,y_2)\),

\(∵\overrightarrow{AP}=λ\overrightarrow{AQ}\),\(\overrightarrow{PD}=λ\overrightarrow{DQ}\),
\(∴λ=\dfrac{|AP|}{|AQ|}= \dfrac{|DP|}{|DQ|}\),
\(∵QC||BP\),
\(∴\dfrac{|AP|}{|AQ|}=\dfrac{|BP|}{|EQ|}\),\(\dfrac{|DP|}{|DQ|}=\dfrac{|BP|}{|FQ|}\),
(相似三角形中,\(A\)字型和\(8\)字型模型很常见,这也是作辅助线的思路来源)
\(∴\dfrac{|BP|}{|EQ|}=\dfrac{|BP|}{|FQ|}\),\(∴|EQ|=|FQ|\),即\(Q\)为\(EF\)中点,
\(∴F(2x_2-2,2y_2-y_E)\),
\(∵\dfrac{|AP|}{|AQ|}=\dfrac{|AB|}{|AE|}=\dfrac{2}{3-y_E }\),\(\dfrac{|AP|}{|AQ|}=\dfrac{x_1-2}{x_2-2}\),
\(∴\dfrac{2}{3-y_E }=\dfrac{x_1-2}{x_2-2}⇒y_E=3-\dfrac{2(x_2-2)}{x_1-2 }\),
\(∴k_{BF}=\dfrac{2y_2-y_E-1}{2x_2-4}=\dfrac{2y_2+\dfrac{2(x_2-2)}{x_1-2 }-4}{2x_2-4}=\dfrac{(x_1-2)(y_2-2)+x_2-2}{(x_1-2)(x_2-2)}\),
(作出辅助线后,能猜测到动点\(D\)所在的定直线是过点\(B\)的,若\(k_{BF}\)是定值则证明成立)
设直线\(PQ\)方程为\(y=kx+m\),其中\(m+2k=3\),
(为了避免计算量过大,不要把直线设为\(y=k(x-2)+3\)再联立方程)
联立\(x^2-y^2=1\),得\((k^2-1) x^2+2kmx+m^2+1=0\),
则\(x_1+x_2=\dfrac{-2km}{k^2-1}\),\(x_1 x_2=\dfrac{m^2+1}{k^2-1}\),
\(∴k_{BF}=\dfrac{(x_1-2)(kx_2+m-2)+x_2-2}{(x_1-2)(x_2-2)}=\dfrac{kx_1 x_2+(m-2) x_1+(1-2k) x_2-2m+2}{x_1 x_2-2(x_1+x_2 )+4}\)\(=\dfrac{kx_1 x_2+(1-2k)(x_1+x_2 )-2m+2}{x_1 x_2-2(x_1+x_2 )+4}=\dfrac{k\cdot \dfrac{m^2+1}{k^2-1}+(1-2k)\cdot \dfrac{-2km}{k^2-1}-2m+2}{\dfrac{m^2+1}{k^2-1}-2\cdot \dfrac{-2km}{k^2-1}+4}\)
\(= \dfrac{k(m^2+1)-2km(1-2k)+(2-2m)(k^2-1)}{m^2+1+4km+4(k^2-1)}= \dfrac{(2m+2) k^2+(m-1)^2 k+2m-2}{4k^2+4km+m^2-3}\)
\(= \dfrac{(2m+2) k^2+(m-1)^2 k+2(m-3)+4}{(2k+m)^2-3}= \dfrac{[2k+(m-3)][(m+1)k+2]+4}{(2k+m)^2-3}\)
\(= \dfrac{0+4}{9-3}= \dfrac{2}{3}\),
(计算量还是很大,还存在一定的运算技巧,不如方法1简洁,但它是第2小问通向简洁方法的路径)
\(∴\)直线\(BF\)的方程为\(y-1= \dfrac{2}{3}(x-2)\),即\(2x-3y-1=0\),
\(∴\)点\(D\)总在定直线\(2x-3y-1=0\)上;
第2小问
该问若直接切入求解(设\(BP\)方程—求点\(R\)坐标—求直线\(QR\)方程—确定定点),计算量会很大;
所以思考是否存在简单些的方法,就考虑从几何的角度出发.
(在第1小问方法3的基础上解答)
设直线\(QR\)交直线\(BF\)于点\(G\),交直线\(AB\)于点\(H\),\(R(x_3,y_3)\),\(G(x_4,y_4)\),

\(∵QE||BP\),
\(∴\dfrac{|HQ|}{|HR|}=\dfrac{|EQ|}{|BR|}\),\(\dfrac{|GQ|}{|GR|}=\dfrac{|FQ|}{|BR|}=\dfrac{|EQ|}{|BR|}\),
\(∴\dfrac{|HQ|}{|HR|}=\dfrac{|GQ|}{|GR|}\),
(还是\(A\)字型和\(8\)字型)
\(∴\dfrac{|x_2-2|}{|x_3-2|}=\dfrac{|x_2-x_4|}{|x_3-x_4 |}\),(注意加上绝对值)
\(∴|(x_2-2)(x_3-x_4 )|=|(x_3-2)(x_2-x_4 )|\),
若\((x_2-2)(x_3-x_4 )=(x_3-2)(x_2-x_4 )\),化简得\(x_4=2\),显然不成立,
\(∴(x_2-2)(x_3-x_4 )=-(x_3-2)(x_2-x_4 )\),
化简得\(2x_2 x_3-(x_4+2)(x_2+x_3 )+4x_4=0\)(※),
设直线\(QR\)的方程为\(y=k_1 x+n\),
联立\(x^2-y^2=1\),得\((k_1^2-1) x^2+2k_1 nx+n^2+1=0\),
则\(x_2+x_3=\dfrac{-2k_1 n}{k_1^2-1}\),\(x_2 x_3=\dfrac{n^2+1}{k_1^2-1}\),
代入(※)得\(\dfrac{2n^2+2}{k_1^2-1}+\dfrac{2k_1 n}{k_1^2-1}(x_4+2)+4x_4=0\),
由\(\left\{
\begin{array}{c}
2x-y-1=0\\
y=k_1 x+n
\end{array}
\right.
\),解得\(x=\dfrac{3n+1}{2-3k_1}\),即\(x_4=\dfrac{3n+1}{2-3k_1}\),
\(∴\dfrac{2n^2+2}{k_1^2-1}+\dfrac{2k_1 n}{k_1^2-1}\left(\dfrac{3n+1}{2-3k_1}+2\right)+4\cdot \dfrac{3n+1}{2-3k_1}=0\),
\(⟹(2n^2+2)(2-3k_1 )+2k_1 n(3n-6k_1+5)+4(3n+1)(k_1^2-1) =0\),
\(⟹4n^2+10k_1 n+4k_1^2-6k_1-12n=0\),
\(⟹2n^2+5k_1 n+2k_1^2-3k_1-6n=0\),
\(⟹(2n+k_1 )(n+2k_1 )-3(2n+k_1 )=0\),
\(⟹(2n+k_1 )(n+2k_1-3)=0\),
(运算过程中,因式分解是常用的技巧)
若\(n+2k_1-3=0\)时,则\(n=3-2k_1\),
\(∴\)直线\(QR\)的方程为\(y=k_1 x+3-2k_1=k(x-2)+3\),过点\(A(2,3)\),故不成立;
\(∴2n+k_1=0⟹n=- \dfrac{1}{2} k_1\),
\(∴\)直线\(QR\)的方程为\(y=k_1 x- \dfrac{1}{2} k_1=k_1 \left(x- \dfrac{1}{2}\right)\),过定点\(\left(\dfrac{1}{2},0\right)\).

浙公网安备 33010602011771号