三角函数中求参数ω的取值范围(保姆级教学)
根据某三角型函数\(f(x)=A\sin(ωx+φ)\)的单调性、对称性、最值等情况求参数\(ω\)的取值范围,对于高一刚学三角函数的学生来说难度较大;接下来我们展开保姆级的教学,在对比之下大家体会下:含参与不含参题目的方法或思路是差不多.
以下以\(f(x)=A\sin(ωx+φ)\)为例,\(f(x)=A\cos(ωx+φ)\)或\(f(x)=A\tan(ωx+φ)\)同理.
一 对称性问题
不含参三角函数
(多选题)以下哪个是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
A.\(x=\dfrac{π}{8}\) \(\qquad \qquad\) B.\(x=\dfrac{π}{4}\) \(\qquad \qquad\) C.\(x=\dfrac{9π}{8}\) \(\qquad \qquad\) D.\(x=π\)
【解答】
方法1 复合函数转化法
令\(t=2x+\dfrac{π}{4}\),(把\(2x+\dfrac{π}{4}\)看成整体)
选项\(A\),判断题:\(x=\dfrac{π}{8}\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
即相当于问“当\(x=\dfrac{π}{8}\)时,\(t=2x+\dfrac{π}{4}=\dfrac{π}{2}\)是否为\(y=\sinx\)的对称轴”
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sinx\)的问题)
显然\(x=\dfrac{π}{2}\)是\(y=\sinx\)的对称轴,故\(A\)是对的;
当\(x=\dfrac{π}{4}\)时,\(t=2x+\dfrac{π}{4}=2×\dfrac{π}{4}+\dfrac{π}{4}=\dfrac{3π}{4}\)不是\(y=\sinx\)的对称轴,故\(B\)是错的;
当\(x=\dfrac{9π}{8}\)时,\(t=2x+\dfrac{π}{4}=2×\dfrac{9π}{8}+\dfrac{π}{4}=\dfrac{5π}{2}\)是\(y=\sinx\)的对称轴,故\(C\)是对的;
当\(x=π\)时,\(t=2x+\dfrac{π}{4}=2π+\dfrac{π}{4}=\dfrac{9π}{4}\)不是\(y=\sinx\)的对称轴,故\(D\)是错的.
故选\(AC\).
方法2 求出函数所有对称轴
令\(2x+\dfrac{π}{4}=\dfrac{kπ}{2}+kπ\)(把\(2x+\dfrac{π}{4}\)看成整体,令其等于\(y=\sinx\)的对称轴\(x=\dfrac{kπ}{2}+kπ\))
解得\(x=\dfrac{π}{8}+\dfrac{kπ}{2}\),\(k\in Z\),
选项\(A\),判断题:\(x=\dfrac{π}{8}\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
即相当于问“是否存在\(k_0\in Z\),使得\(\dfrac{π}{8}=\dfrac{π}{8}+\dfrac{k_0π}{2}\)”,显然\(k_0=0\in Z\),(\(k_0\)要是整数)
故\(A\)是对的;
选项\(B\),判断题:\(x=\dfrac{π}{4}\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
即相当于问“是否存在\(k_0\in Z\),使得\(\dfrac{π}{4}=\dfrac{π}{8}+\dfrac{k_0π}{2}\)”,显然\(k_0=\dfrac{1}{4} \notin Z\),故\(B\)是错的;
又\(k=2\)时,\(x=\dfrac{π}{8}+π=\dfrac{9π}{8}\),故\(C\)是对的;
而\(\dfrac{π}{8}+\dfrac{kπ}{2}=π⟹k=\dfrac{7}{4} \notin Z\),故\(D\)是错的;
故选\(AC\).
含参三角函数
已知函数\(f(x)=3\sin \left(ωx-\dfrac{π}{4}\right)(ω>0)\)的图象在\(\left[0,\dfrac{π}{2} \right]\)上恰有四个对称中心,则\(ω\)的取值范围为\(\underline{\quad \quad}\).
【解答】
方法1 复合函数转化法
令\(t=ωx-\dfrac{π}{4}\),(把\(ωx-\dfrac{π}{4}\)看成整体)
\(∵0≤x≤\dfrac{π}{2}\),则\(-\dfrac{π}{4}≤ωx-\dfrac{π}{4}≤\dfrac{πω}{2}-\dfrac{π}{4}⟹-\dfrac{π}{4}≤t≤\dfrac{πω}{2}-\dfrac{π}{4}\),(求出整体\(t\)的范围)
因为函数\(y=f(x)\)在\(\left[0,\dfrac{π}{2} \right]\)上恰有四个对称中心,
所以函数\(y=\sinx\)在\(\left[-\dfrac{π}{4},\dfrac{πω}{2}-\dfrac{π}{4} \right]\)上恰有四个对称中心,
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sinx\)的问题)

所以\(3π≤\dfrac{πω}{2}-\dfrac{π}{4}<4π\),解得\(\dfrac{13}{2}≤ω<\dfrac{17}{2}\),
即\(ω\)的取值范围为\(\left[\dfrac{13}{2},\dfrac{17}{2}\right)\).
方法2 求出函数所有对称中心
令\(ωx-\dfrac{π}{4}=kπ\),(把\(ωx-\dfrac{π}{4}\)看成整体,令其等于\(y=\sinx\)的对称中心\((kπ,0)\)的横坐标)
解得\(x=\dfrac{π}{4ω}+\dfrac{kπ}{ω}\),则\(y=f(x)\)的所有对称中心为\(\left(\dfrac{π}{4ω}+\dfrac{kπ}{ω},0\right)\);
\(y=f(x)\)的图象在\(\left[0,\dfrac{π}{2} \right]\)上恰有四个对称中心,
即在\(\left[0,\dfrac{π}{2} \right]\)上,恰存在连续四个\(k\in Z\)值使得\(\dfrac{π}{4ω}+\dfrac{kπ}{ω}\in \left[0,\dfrac{π}{2} \right]⟹\dfrac{1}{4ω}+\dfrac{k}{ω}\in \left[0,\dfrac{1}{2} \right]\),
假设四个\(k\)中最小的为\(k_0\),

则\(\left\{
\begin{array}{c}
\dfrac{1}{4ω}+\dfrac{k_0-1}{ω}<0\\
\dfrac{1}{4ω}+\dfrac{k_0}{ω}>0\\
\dfrac{1}{4ω}+\dfrac{k_0+3}{ω}≤\dfrac{1}{2}\\
\dfrac{1}{4ω}+\dfrac{k_0+4}{ω}>\dfrac{1}{2}
\end{array}
\right.
⟹\left\{
\begin{array}{c}
k_0<\dfrac{3}{4}\\
k_0>-\dfrac{1}{4}\\
ω≥2k_0+\dfrac{13}{2}\\
ω<2k_0+\dfrac{17}{2}
\end{array}
\right.\),
(以\(ω\)为变量求解不等式)
解得\(\left\{
\begin{array}{c}
-\dfrac{1}{4}<k_0<\dfrac{3}{4}\\
2k_0+\dfrac{13}{2}≤ω<2k_0+\dfrac{17}{2}
\end{array}
\right.
\),
(此处的难度较大,要注意利用好\(k_0\in Z\)和\(ω>0\)两个限制条件,把\(k_0\)的值求出)
而\(k_0\in Z\),所以\(k_0=0\),所以\(2k_0+\dfrac{13}{2}≤ω<2k_0+\dfrac{17}{2}⟹\dfrac{13}{2}≤ω<\dfrac{17}{2}\);
即\(ω\)的取值范围为\(\left[\dfrac{13}{2},\dfrac{17}{2}\right)\).
二 单调性问题
不含参三角函数
(多选题)以下哪个是函数\(f(x)=3\sin\left(2x+\dfrac{π}{4}\right)\)的增区间 ( \(\qquad\) )
A.\(\left(-\dfrac{11π}{8},-\dfrac{7π}{8}\right)\) \(\qquad \qquad\) B.\(\left(-\dfrac{3π}{8},\dfrac{π}{4}\right)\) \(\qquad \qquad\) C.\(\left(\dfrac{7π}{8},\dfrac{9π}{8}\right)\) \(\qquad \qquad\) D.\(\left(\dfrac{11π}{8},\dfrac{15π}{8}\right)\)
【解答】
方法1 复合函数转化法
令\(t=2x+\dfrac{π}{4}\),(把\(2x+\dfrac{π}{4}\)看成整体)
选项\(A\),判断题:\((-\dfrac{11π}{8},-\dfrac{7π}{8})\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的增区间 ( \(\qquad\) )
即相当于问“当\(x\in \left(-\dfrac{11π}{8},-\dfrac{7π}{8}\right)\)时,\(t=2x+\dfrac{π}{4}\in \left(-\dfrac{5π}{2},-\dfrac{3π}{2}\right)\)是否为\(y=\sinx\)的增区间”
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sinx\)的问题)
显然为\(y=\sinx\)在\(\left(-\dfrac{5π}{2},-\dfrac{3π}{2}\right)\)上递增,故\(A\)是对的;
当\(x\in \left(-\dfrac{3π}{8},\dfrac{π}{4}\right)\)时,\(t=2x+\dfrac{π}{4}\in \left(-\dfrac{π}{2},\dfrac{3π}{4}\right)\),\(y=\sinx\)在\(\left(-\dfrac{π}{2},\dfrac{3π}{4}\right)\)上不递增,故\(B\)是错的;
当\(x\in \left(\dfrac{7π}{8},\dfrac{9π}{8}\right)\)时,\(t=2x+\dfrac{π}{4}\in \left(2π,\dfrac{5π}{2}\right)\),\(y=\sinx\)在\(\left(2π,\dfrac{5π}{2}\right)\)上递增,故\(C\)是对的;
当\(x\in \left(\dfrac{11π}{8},\dfrac{15π}{8}\right)\)时,\(t=2x+\dfrac{π}{4}\in (3π,4π)\),\(y=\sinx\)在\((3π,4π)\)上不递增,故\(D\)是错的;
故选\(AC\).
方法2 求出函数所有增区间
令\(-\dfrac{π}{2}+2kπ≤2x+\dfrac{π}{4}≤\dfrac{π}{2}+2kπ\),(把\(2x+\dfrac{π}{4}\)看成整体,把其代入\(y=\sinx\)的增区间)
解得\(-\dfrac{3π}{8}+kπ≤x≤\dfrac{π}{8}+kπ\),则\(y=f(x)\)的所有增区间\(\left(-\dfrac{3π}{8}+kπ,\dfrac{π}{8}+kπ\right)\);
与判断函数对称轴的思路一样,
当\(k=-1\)时,增区间为\(\left(-\dfrac{11π}{8},-\dfrac{7π}{8}\right)\);当\(k=0\)时,增区间为\(\left(-\dfrac{3π}{8},\dfrac{π}{8}\right)\);
当\(k=1\)时,增区间为\(\left(\dfrac{5π}{8},\dfrac{9π}{8}\right)\);当\(k=2\)时,增区间为\(\left(\dfrac{13π}{8},\dfrac{17π}{8}\right)\).
故选\(AC\).
含参三角函数
已知函数\(f(x)=3\sin \left(ωx+\dfrac{π}{4}\right)\),其中\(ω>0\).若\(f(x)\)在区间\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)\)上单调递增,则\(ω\)的取值范围是\(\underline{\quad \quad}\).
【解答】
方法1 复合函数转化法
令\(t=ωx+\dfrac{π}{4}\),(把\(ωx+\dfrac{π}{4}\)看成整体)
\(∵\dfrac{π}{2}<x<\dfrac{3π}{4}\),
则\(\dfrac{π}{2}ω+\dfrac{π}{4}≤ωx+\dfrac{π}{4}≤\dfrac{3π}{4}ω+\dfrac{π}{4}⟹\dfrac{π}{2}ω+\dfrac{π}{4}≤t≤\dfrac{3π}{4}ω+\dfrac{π}{4}\),(求出整体\(t\)的范围)
\(∵y=f(x)\)在区间\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)\)上单调递增,
\(∴y=\sint\)在\(\left(\dfrac{π}{2}ω+\dfrac{π}{4},\dfrac{3π}{4}ω+\dfrac{π}{4}\right)\)上单调递增,
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sinx\)的问题)
则存在\(k_0\in Z\),使得\(\left(\dfrac{π}{2}ω+\dfrac{π}{4},\dfrac{3π}{4}ω+\dfrac{π}{4}\right)⊆ \left[-\dfrac{π}{2}+2k_0π,\dfrac{π}{2}+2k_0π \right]\),
即\(\left\{
\begin{array}{c}
\dfrac{π}{2}ω+\dfrac{π}{4}≥-\dfrac{π}{2}+2k_0π\\
\dfrac{3π}{4}ω+\dfrac{π}{4}≤\dfrac{π}{2}+2k_0π
\end{array}
\right.
\),解得\(-\dfrac{3}{2}+4k_0≤ω≤\dfrac{1}{3}+\dfrac{8}{3}k_0\),
\(∴-\dfrac{3}{2}+4k_0≤\dfrac{1}{3}+\dfrac{8}{3}k_0\),解得\(k_0<\dfrac{11}{8}\),
\(∵ω>0\),\(∴\dfrac{1}{3}+\dfrac{8}{3}k_0≥0\),解得\(k_0≥-\dfrac{1}{8}\),
\(∴-\dfrac{1}{8}≤k_0<\dfrac{11}{8}\),
又因为\(k_0\in Z\),所以\(k_0=0\)或\(1\),
(此处的难度较大,要注意利用好\(k_0\in Z\)和\(ω>0\)两个限制条件,把\(k_0\)的值求出)
当\(k_0=0\)时,\(-\dfrac{3}{2}≤ω≤\dfrac{1}{3}\),
又\(∵ω>0\),则\(0<ω≤\dfrac{1}{3}\),
当\(k_0=1\)时,\(\dfrac{5}{2}≤ω≤3\),
\(∴ω\in \left(0,\dfrac{1}{3} \right]∪ \left[\dfrac{5}{2},3 \right]\).
方法2 求出函数所有增区间
令\(-\dfrac{π}{2}+2kπ<ωx+\dfrac{π}{4}<\dfrac{π}{2}+2kπ\),(把\(ωx+\dfrac{π}{4}\)看成整体,把代入\(y=\sinx\)的增区间)
解得\(-\dfrac{3π}{4ω}+\dfrac{2kπ}{ω}<x<\dfrac{π}{4ω}+\dfrac{2kπ}{ω}\),
则\(y=f(x)\)的所有增区间为\(\left(-\dfrac{3π}{4ω}+\dfrac{2kπ}{ω},\dfrac{π}{4ω}+\dfrac{2kπ}{ω}\right)\);
\(∵y=f(x)\)在区间\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)\)上单调递增,
\(∴\)存在\(k_0\in Z\),使得\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)⊆ \left(-\dfrac{3π}{4ω}+\dfrac{2k_0π}{ω},\dfrac{π}{4ω}+\dfrac{2k_0π}{ω}\right)\),
即\(\left\{
\begin{array}{c}
-\dfrac{3π}{4ω}+\dfrac{2k_0π}{ω}≤\dfrac{π}{2}\\
\dfrac{π}{4ω}+\dfrac{2k_0π}{ω}≥\dfrac{3π}{4}
\end{array}
\right.
\),解得\(-\dfrac{3}{2}+4k_0≤ω≤\dfrac{1}{3}+\dfrac{8}{3}k_0\),
同方法1得\(ω\in\left(0,\dfrac{1}{3} \right]∪ \left[\dfrac{5}{2},3 \right]\).
从以上两个例子,求解的方法主要有两个:复合函数法和求出函数的所以相应的性质,含参数的问题主要是利用好利用好\(k_0\in Z\)和\(ω>0\)两个限制条件,把\(k_0\)的值求出再求出参数\(ω\)的范围;对比而已,复合函数法更简单些.
那若以上的对称轴和单调性,换成最值或零点个数呢?思路是一样的,可以举一反三.我们接着看看综合问题.
三 综合问题
【例1】 已知函数\(f(x)=A\cos \left(ωx+\dfrac{π}{6}\right)(A>0,ω>0)\),若\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(4\)个零点和\(1\)个最大值点,
则\(ω\)的取值范围是( \(\qquad \qquad\) )
A.\(\left[\dfrac{5}{3},\dfrac{23}{12}\right)\) \(\qquad \qquad\) B.\(\left[\dfrac{11}{12},\dfrac{23}{12}\right)\) \(\qquad \qquad\) C.\(\left[\dfrac{5}{3},\dfrac{13}{6}\right)\) \(\qquad \qquad\) D.\(\left[\dfrac{23}{12},\dfrac{13}{6}\right)\)
【解答】
由\(x\in \left[0,2π \right]\),设\(t=ωx+\dfrac{π}{6}\in \left[\dfrac{π}{6},2πω+\dfrac{π}{6} \right]\);
\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(4\)个零点和\(1\)个最大值点,
即\(y=A\cos t\)在区间\(\left[\dfrac{π}{6},2πω+\dfrac{π}{6} \right]\)上有且仅有\(4\)个零点和\(1\)个最大值点.
作出\(y=A\cos t\)的图象如图.

由\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(4\)个零点,得\(\dfrac{7π}{2}≤2πω+\dfrac{π}{6}<\dfrac{9π}{2}\)①;
又\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(1\)个最大值点,得\(2π≤2πω+\dfrac{π}{6}<4π\)②;
依题意需同时满足①②式,于是得\(\dfrac{7π}{2}≤2πω+\dfrac{π}{6}<4π\),
即\(\dfrac{10π}{3}≤2πω<\dfrac{23π}{6}\),解得\(\dfrac{5}{3}≤ω<\dfrac{23}{12}\),
故\(ω\)的取值范围是\(\left[\dfrac{5}{3},\dfrac{23}{12}\right)\).
故选:\(A\).
【例2】 已知函数\(f(x)=\sin \left(ωx+\dfrac{π}{3}\right)(ω>0)\)在\(\left(0,\dfrac{π}{3}\right)\)上存在零点,且在\(\left(\dfrac{2π}{3},π\right)\)上单调递增,
则\(ω\)的取值范围为( $\qquad \qquad $ )
A.\((2,3]\) \(\qquad \qquad\) B.\(\left(2,\dfrac{13}{6} \right]\) \(\qquad \qquad\) C.\(\left[\dfrac{7}{4},\dfrac{13}{6} \right]\) \(\qquad \qquad\) D.\(\left[\dfrac{7}{4},3 \right]\)
【解答】 因为\(ω>0\),当\(x\in \left(0,\dfrac{π}{3}\right)\)时\(ωx+\dfrac{π}{3}\in \left(\dfrac{π}{3},\dfrac{π}{3}ω+\dfrac{π}{3}\right)\),
由函数\(f(x)\)在\(\left(0,\dfrac{π}{3}\right)\)上存在零点,所以\(\dfrac{π}{3}ω+\dfrac{π}{3}>π\),解得\(ω>2\);
因为\(f(x)\)在\(\left(0,\dfrac{π}{3}\right)\)上单调递增,故\(\left\{
\begin{array}{c}
\dfrac{2π}{3}ω+\dfrac{π}{3}≥-\dfrac{π}{2}+2kπ\\
πω+\dfrac{π}{3}≤\dfrac{π}{2}+2kπ)
\end{array}
\right.
\),\(k\in Z\),
解得\(-\dfrac{5}{4}+3k≤ω≤\dfrac{1}{6}+2k\),\(k\in Z\);
显然\(-\dfrac{5}{4}+3k≤\dfrac{1}{6}+2k\),所以\(k≤\dfrac{17}{12}\);
当\(k≤0\)时,\(ω\)无解;当\(k=1\)时,可得\(2<ω≤\dfrac{13}{6}\)满足题意,
即\(ω\)的取值范围为\(\left(2,\dfrac{13}{6} \right]\).
故选:\(B\).
【例3】 将函数\(f(x)=\cos \left(x+\dfrac{2π}{3}\right)\)图象上所有点的横坐标变为原来的\(\dfrac{1}{ω}(ω>0)\),纵坐标不变,所得图象在区间\(\left[0,\dfrac{2π}{3} \right]\)上恰有两个零点,且在\(\left[-\dfrac{π}{12},\dfrac{π}{12} \right]\)上单调递减,则\(ω\)的取值范围为( \(\qquad \qquad\) )
A.\(\left[\dfrac{9}{4},3 \right]\) \(\qquad \qquad\) B.\(\left[\dfrac{9}{4},4\right)\) \(\qquad \qquad\) C.\(\left[\dfrac{11}{4},4 \right]\) \(\qquad \qquad\) D.\(\left(\dfrac{11}{4},6 \right]\)
【解答】 依题意可得\(y=\cos \left(ωx+\dfrac{2π}{3}\right)\),
因为\(0≤x≤\dfrac{2π}{3}\),所以\(\dfrac{2π}{3}≤ωx+\dfrac{2π}{3}≤\dfrac{2ω}{3}π+\dfrac{2π}{3}\),
因为\(y=\cos \left(ωx+\dfrac{2π}{3}\right)\)在\(\left[0,\dfrac{2π}{3} \right]\)恰有\(2\)个零点,且\(\cos \left(\dfrac{π}{2}+k_1π\right)=0\),\(k_1\in Z\),
所以\(\dfrac{5π}{2}≤\dfrac{2ω}{3}π+\dfrac{2π}{3}<\dfrac{7π}{2}\),解得\(\dfrac{11}{4}≤ω<\dfrac{17}{4}\),
令\(2k_2π≤ωx+\dfrac{2π}{3}≤π+2k_2π\),\(k_2\in Z\),
得\(-\dfrac{2π}{3ω}+\dfrac{2k_2π}{ω}≤x≤\dfrac{π}{3ω}+\dfrac{2k_2π}{ω}\),\(k_2\in Z\),
令\(k_2=0\),得\(y=\cos \left(ωx+\dfrac{2π}{3}\right)\)在\(\left[-\dfrac{2π}{3ω},\dfrac{π}{3ω} \right]\)上单调递减,
所以\(\left[-\dfrac{π}{12},\dfrac{π}{12} \right]⊆ \left[-\dfrac{2π}{3ω},\dfrac{π}{3ω }\right]\),
所以\(\left\{
\begin{array}{c}
-\dfrac{2π}{3ω}≤-\dfrac{π}{12}\\
\dfrac{π}{3ω}≥\dfrac{π}{12}
\end{array}
\right.
\),又\(ω>0\),解得\(0<ω≤4\).
综上所述,\(\dfrac{11}{4}≤ω≤4\),
故选:\(C\).

浙公网安备 33010602011771号