三角函数中求参数ω的取值范围(保姆级教学)

根据某三角型函数\(f(x)=A\sin(ωx+φ)\)的单调性、对称性、最值等情况求参数\(ω\)的取值范围,对于高一刚学三角函数的学生来说难度较大;接下来我们展开保姆级的教学,在对比之下大家体会下:含参与不含参题目的方法或思路是差不多.
以下以\(f(x)=A\sin(ωx+φ)\)为例,\(f(x)=A\cos(ωx+φ)\)\(f(x)=A\tan(ωx+φ)\)同理.
 
 

一 对称性问题

不含参三角函数

(多选题)以下哪个是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
A.\(x=\dfrac{π}{8}\) \(\qquad \qquad\) B.\(x=\dfrac{π}{4}\) \(\qquad \qquad\) C.\(x=\dfrac{9π}{8}\) \(\qquad \qquad\) D.\(x=π\)
 

【解答】
方法1 复合函数转化法
\(t=2x+\dfrac{π}{4}\)(把\(2x+\dfrac{π}{4}\)看成整体)
选项\(A\),判断题:\(x=\dfrac{π}{8}\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
即相当于问“当\(x=\dfrac{π}{8}\)时,\(t=2x+\dfrac{π}{4}=\dfrac{π}{2}\)是否为\(y=\sin⁡x\)的对称轴”
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sin⁡x\)的问题)
显然\(x=\dfrac{π}{2}\)\(y=\sin⁡x\)的对称轴,故\(A\)是对的;
\(x=\dfrac{π}{4}\)时,\(t=2x+\dfrac{π}{4}=2×\dfrac{π}{4}+\dfrac{π}{4}=\dfrac{3π}{4}\)不是\(y=\sin⁡x\)的对称轴,故\(B\)是错的;
\(x=\dfrac{9π}{8}\)时,\(t=2x+\dfrac{π}{4}=2×\dfrac{9π}{8}+\dfrac{π}{4}=\dfrac{5π}{2}\)\(y=\sin⁡x\)的对称轴,故\(C\)是对的;
\(x=π\)时,\(t=2x+\dfrac{π}{4}=2π+\dfrac{π}{4}=\dfrac{9π}{4}\)不是\(y=\sin⁡x\)的对称轴,故\(D\)是错的.
故选\(AC\).
 

方法2 求出函数所有对称轴
\(2x+\dfrac{π}{4}=\dfrac{kπ}{2}+kπ\)(把\(2x+\dfrac{π}{4}\)看成整体,令其等于\(y=\sin⁡x\)的对称轴\(x=\dfrac{kπ}{2}+kπ\))
解得\(x=\dfrac{π}{8}+\dfrac{kπ}{2}\)\(k\in Z\)
选项\(A\),判断题:\(x=\dfrac{π}{8}\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
即相当于问“是否存在\(k_0\in Z\),使得\(\dfrac{π}{8}=\dfrac{π}{8}+\dfrac{k_0π}{2}\)”,显然\(k_0=0\in Z\)(\(k_0\)要是整数)
\(A\)是对的;
选项\(B\),判断题:\(x=\dfrac{π}{4}\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的对称轴 ( \(\qquad\) )
即相当于问“是否存在\(k_0\in Z\),使得\(\dfrac{π}{4}=\dfrac{π}{8}+\dfrac{k_0π}{2}\)”,显然\(k_0=\dfrac{1}{4} \notin Z\),故\(B\)是错的;
\(k=2\)时,\(x=\dfrac{π}{8}+π=\dfrac{9π}{8}\),故\(C\)是对的;
\(\dfrac{π}{8}+\dfrac{kπ}{2}=π⟹k=\dfrac{7}{4} \notin Z\),故\(D\)是错的;
故选\(AC\).
 

含参三角函数

已知函数\(f(x)=3\sin \left(ωx-\dfrac{π}{4}\right)(ω>0)\)的图象在\(\left[0,\dfrac{π}{2} \right]\)上恰有四个对称中心,则\(ω\)的取值范围为\(\underline{\quad \quad}\).
 

【解答】
方法1 复合函数转化法
\(t=ωx-\dfrac{π}{4}\)(把\(ωx-\dfrac{π}{4}\)看成整体)
\(∵0≤x≤\dfrac{π}{2}\),则\(-\dfrac{π}{4}≤ωx-\dfrac{π}{4}≤\dfrac{πω}{2}-\dfrac{π}{4}⟹-\dfrac{π}{4}≤t≤\dfrac{πω}{2}-\dfrac{π}{4}\)(求出整体\(t\)的范围)
因为函数\(y=f(x)\)\(\left[0,\dfrac{π}{2} \right]\)上恰有四个对称中心,
所以函数\(y=\sin⁡x\)\(\left[-\dfrac{π}{4},\dfrac{πω}{2}-\dfrac{π}{4} \right]\)上恰有四个对称中心,
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sin⁡x\)的问题)

所以\(3π≤\dfrac{πω}{2}-\dfrac{π}{4}<4π\),解得\(\dfrac{13}{2}≤ω<\dfrac{17}{2}\)
\(ω\)的取值范围为\(\left[\dfrac{13}{2},\dfrac{17}{2}\right)\).
 

方法2 求出函数所有对称中心
\(ωx-\dfrac{π}{4}=kπ\)(把\(ωx-\dfrac{π}{4}\)看成整体,令其等于\(y=\sin⁡x\)的对称中心\((kπ,0)\)的横坐标)
解得\(x=\dfrac{π}{4ω}+\dfrac{kπ}{ω}\),则\(y=f(x)\)的所有对称中心为\(\left(\dfrac{π}{4ω}+\dfrac{kπ}{ω},0\right)\)
\(y=f(x)\)的图象在\(\left[0,\dfrac{π}{2} \right]\)上恰有四个对称中心,
即在\(\left[0,\dfrac{π}{2} \right]\)上,恰存在连续四个\(k\in Z\)值使得\(\dfrac{π}{4ω}+\dfrac{kπ}{ω}\in \left[0,\dfrac{π}{2} \right]⟹\dfrac{1}{4ω}+\dfrac{k}{ω}\in \left[0,\dfrac{1}{2} \right]\)
假设四个\(k\)中最小的为\(k_0\)

\(\left\{ \begin{array}{c} \dfrac{1}{4ω}+\dfrac{k_0-1}{ω}<0\\ \dfrac{1}{4ω}+\dfrac{k_0}{ω}>0\\ \dfrac{1}{4ω}+\dfrac{k_0+3}{ω}≤\dfrac{1}{2}\\ \dfrac{1}{4ω}+\dfrac{k_0+4}{ω}>\dfrac{1}{2} \end{array} \right. ⟹\left\{ \begin{array}{c} k_0<\dfrac{3}{4}\\ k_0>-\dfrac{1}{4}\\ ω≥2k_0+\dfrac{13}{2}\\ ω<2k_0+\dfrac{17}{2} \end{array} \right.\)
(以\(ω\)为变量求解不等式)
解得\(\left\{ \begin{array}{c} -\dfrac{1}{4}<k_0<\dfrac{3}{4}\\ 2k_0+\dfrac{13}{2}≤ω<2k_0+\dfrac{17}{2} \end{array} \right. \),
(此处的难度较大,要注意利用好\(k_0\in Z\)\(ω>0\)两个限制条件,把\(k_0\)的值求出)
\(k_0\in Z\),所以\(k_0=0\),所以\(2k_0+\dfrac{13}{2}≤ω<2k_0+\dfrac{17}{2}⟹\dfrac{13}{2}≤ω<\dfrac{17}{2}\)
\(ω\)的取值范围为\(\left[\dfrac{13}{2},\dfrac{17}{2}\right)\).

 

二 单调性问题

不含参三角函数

(多选题)以下哪个是函数\(f(x)=3\sin\left(2x+\dfrac{π}{4}\right)\)的增区间 ( \(\qquad\) )
A.\(\left(-\dfrac{11π}{8},-\dfrac{7π}{8}\right)\) \(\qquad \qquad\) B.\(\left(-\dfrac{3π}{8},\dfrac{π}{4}\right)\) \(\qquad \qquad\) C.\(\left(\dfrac{7π}{8},\dfrac{9π}{8}\right)\) \(\qquad \qquad\) D.\(\left(\dfrac{11π}{8},\dfrac{15π}{8}\right)\)
 

【解答】
方法1 复合函数转化法
\(t=2x+\dfrac{π}{4}\)(把\(2x+\dfrac{π}{4}\)看成整体)
选项\(A\),判断题:\((-\dfrac{11π}{8},-\dfrac{7π}{8})\)是函数\(f(x)=3\sin \left(2x+\dfrac{π}{4}\right)\)的增区间 ( \(\qquad\) )
即相当于问“当\(x\in \left(-\dfrac{11π}{8},-\dfrac{7π}{8}\right)\)时,\(t=2x+\dfrac{π}{4}\in \left(-\dfrac{5π}{2},-\dfrac{3π}{2}\right)\)是否为\(y=\sin⁡x\)的增区间”
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sin⁡x\)的问题)
显然为\(y=\sin⁡x\)\(\left(-\dfrac{5π}{2},-\dfrac{3π}{2}\right)\)上递增,故\(A\)是对的;
\(x\in \left(-\dfrac{3π}{8},\dfrac{π}{4}\right)\)时,\(t=2x+\dfrac{π}{4}\in \left(-\dfrac{π}{2},\dfrac{3π}{4}\right)\)\(y=\sin⁡x\)\(\left(-\dfrac{π}{2},\dfrac{3π}{4}\right)\)上不递增,故\(B\)是错的;
\(x\in \left(\dfrac{7π}{8},\dfrac{9π}{8}\right)\)时,\(t=2x+\dfrac{π}{4}\in \left(2π,\dfrac{5π}{2}\right)\)\(y=\sin⁡x\)\(\left(2π,\dfrac{5π}{2}\right)\)上递增,故\(C\)是对的;
\(x\in \left(\dfrac{11π}{8},\dfrac{15π}{8}\right)\)时,\(t=2x+\dfrac{π}{4}\in (3π,4π)\)\(y=\sin⁡x\)\((3π,4π)\)上不递增,故\(D\)是错的;
故选\(AC\).
 

方法2 求出函数所有增区间
\(-\dfrac{π}{2}+2kπ≤2x+\dfrac{π}{4}≤\dfrac{π}{2}+2kπ\)(把\(2x+\dfrac{π}{4}\)看成整体,把其代入\(y=\sin⁡x\)的增区间)
解得\(-\dfrac{3π}{8}+kπ≤x≤\dfrac{π}{8}+kπ\),则\(y=f(x)\)的所有增区间\(\left(-\dfrac{3π}{8}+kπ,\dfrac{π}{8}+kπ\right)\)
与判断函数对称轴的思路一样,
\(k=-1\)时,增区间为\(\left(-\dfrac{11π}{8},-\dfrac{7π}{8}\right)\);当\(k=0\)时,增区间为\(\left(-\dfrac{3π}{8},\dfrac{π}{8}\right)\)
\(k=1\)时,增区间为\(\left(\dfrac{5π}{8},\dfrac{9π}{8}\right)\);当\(k=2\)时,增区间为\(\left(\dfrac{13π}{8},\dfrac{17π}{8}\right)\).
故选\(AC\).
 

含参三角函数

已知函数\(f(x)=3\sin \left(ωx+\dfrac{π}{4}\right)\),其中\(ω>0\).若\(f(x)\)在区间\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)\)上单调递增,则\(ω\)的取值范围是\(\underline{\quad \quad}\).
 

【解答】
方法1 复合函数转化法
\(t=ωx+\dfrac{π}{4}\)(把\(ωx+\dfrac{π}{4}\)看成整体)
\(∵\dfrac{π}{2}<x<\dfrac{3π}{4}\)

\(\dfrac{π}{2}ω+\dfrac{π}{4}≤ωx+\dfrac{π}{4}≤\dfrac{3π}{4}ω+\dfrac{π}{4}⟹\dfrac{π}{2}ω+\dfrac{π}{4}≤t≤\dfrac{3π}{4}ω+\dfrac{π}{4}\)(求出整体\(t\)的范围)
\(∵y=f(x)\)在区间\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)\)上单调递增,
\(∴y=\sin⁡t\)\(\left(\dfrac{π}{2}ω+\dfrac{π}{4},\dfrac{3π}{4}ω+\dfrac{π}{4}\right)\)上单调递增,
(把函数\(y=A\sin(ωx+φ)\)的问题转化为\(y=\sin⁡x\)的问题)
则存在\(k_0\in Z\),使得\(\left(\dfrac{π}{2}ω+\dfrac{π}{4},\dfrac{3π}{4}ω+\dfrac{π}{4}\right)⊆ \left[-\dfrac{π}{2}+2k_0π,\dfrac{π}{2}+2k_0π \right]\)
\(\left\{ \begin{array}{c} \dfrac{π}{2}ω+\dfrac{π}{4}≥-\dfrac{π}{2}+2k_0π\\ \dfrac{3π}{4}ω+\dfrac{π}{4}≤\dfrac{π}{2}+2k_0π \end{array} \right. \),解得\(-\dfrac{3}{2}+4k_0≤ω≤\dfrac{1}{3}+\dfrac{8}{3}k_0\)
\(∴-\dfrac{3}{2}+4k_0≤\dfrac{1}{3}+\dfrac{8}{3}k_0\),解得\(k_0<\dfrac{11}{8}\)
\(∵ω>0\)\(∴\dfrac{1}{3}+\dfrac{8}{3}k_0≥0\),解得\(k_0≥-\dfrac{1}{8}\)
\(∴-\dfrac{1}{8}≤k_0<\dfrac{11}{8}\)
又因为\(k_0\in Z\),所以\(k_0=0\)\(1\)
(此处的难度较大,要注意利用好\(k_0\in Z\)\(ω>0\)两个限制条件,把\(k_0\)的值求出)
\(k_0=0\)时,\(-\dfrac{3}{2}≤ω≤\dfrac{1}{3}\)

\(∵ω>0\),则\(0<ω≤\dfrac{1}{3}\)
\(k_0=1\)时,\(\dfrac{5}{2}≤ω≤3\)
\(∴ω\in \left(0,\dfrac{1}{3} \right]∪ \left[\dfrac{5}{2},3 \right]\).
 

方法2 求出函数所有增区间
\(-\dfrac{π}{2}+2kπ<ωx+\dfrac{π}{4}<\dfrac{π}{2}+2kπ\)(把\(ωx+\dfrac{π}{4}\)看成整体,把代入\(y=\sin⁡x\)的增区间)
解得\(-\dfrac{3π}{4ω}+\dfrac{2kπ}{ω}<x<\dfrac{π}{4ω}+\dfrac{2kπ}{ω}\)

\(y=f(x)\)的所有增区间为\(\left(-\dfrac{3π}{4ω}+\dfrac{2kπ}{ω},\dfrac{π}{4ω}+\dfrac{2kπ}{ω}\right)\)
\(∵y=f(x)\)在区间\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)\)上单调递增,
\(∴\)存在\(k_0\in Z\),使得\(\left(\dfrac{π}{2},\dfrac{3π}{4}\right)⊆ \left(-\dfrac{3π}{4ω}+\dfrac{2k_0π}{ω},\dfrac{π}{4ω}+\dfrac{2k_0π}{ω}\right)\)
\(\left\{ \begin{array}{c} -\dfrac{3π}{4ω}+\dfrac{2k_0π}{ω}≤\dfrac{π}{2}\\ \dfrac{π}{4ω}+\dfrac{2k_0π}{ω}≥\dfrac{3π}{4} \end{array} \right. \),解得\(-\dfrac{3}{2}+4k_0≤ω≤\dfrac{1}{3}+\dfrac{8}{3}k_0\)
同方法1得\(ω\in\left(0,\dfrac{1}{3} \right]∪ \left[\dfrac{5}{2},3 \right]\).
 

从以上两个例子,求解的方法主要有两个:复合函数法和求出函数的所以相应的性质,含参数的问题主要是利用好利用好\(k_0\in Z\)\(ω>0\)两个限制条件,把\(k_0\)的值求出再求出参数\(ω\)的范围;对比而已,复合函数法更简单些.
那若以上的对称轴和单调性,换成最值或零点个数呢?思路是一样的,可以举一反三.我们接着看看综合问题.
 

三 综合问题

【例1】 已知函数\(f(x)=A\cos \left(ωx+\dfrac{π}{6}\right)(A>0,ω>0)\),若\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(4\)个零点和\(1\)个最大值点,
\(ω\)的取值范围是( \(\qquad \qquad\)
A.\(\left[\dfrac{5}{3},\dfrac{23}{12}\right)\) \(\qquad \qquad\) B.\(\left[\dfrac{11}{12},\dfrac{23}{12}\right)\) \(\qquad \qquad\) C.\(\left[\dfrac{5}{3},\dfrac{13}{6}\right)\) \(\qquad \qquad\) D.\(\left[\dfrac{23}{12},\dfrac{13}{6}\right)\)
 

【解答】
\(x\in \left[0,2π \right]\),设\(t=ωx+\dfrac{π}{6}\in \left[\dfrac{π}{6},2πω+\dfrac{π}{6} \right]\)
\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(4\)个零点和\(1\)个最大值点,
\(y=A\cos t\)在区间\(\left[\dfrac{π}{6},2πω+\dfrac{π}{6} \right]\)上有且仅有\(4\)个零点和\(1\)个最大值点.
作出\(y=A\cos t\)的图象如图.

\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(4\)个零点,得\(\dfrac{7π}{2}≤2πω+\dfrac{π}{6}<\dfrac{9π}{2}\)①;
\(f(x)\)在区间\(\left[0,2π \right]\)上有且仅有\(1\)个最大值点,得\(2π≤2πω+\dfrac{π}{6}<4π\)②;
依题意需同时满足①②式,于是得\(\dfrac{7π}{2}≤2πω+\dfrac{π}{6}<4π\)
\(\dfrac{10π}{3}≤2πω<\dfrac{23π}{6}\),解得\(\dfrac{5}{3}≤ω<\dfrac{23}{12}\)
\(ω\)的取值范围是\(\left[\dfrac{5}{3},\dfrac{23}{12}\right)\).
故选:\(A\).
 

【例2】 已知函数\(f(x)=\sin \left(ωx+\dfrac{π}{3}\right)(ω>0)\)\(\left(0,\dfrac{π}{3}\right)\)上存在零点,且在\(\left(\dfrac{2π}{3},π\right)\)上单调递增,
\(ω\)的取值范围为( $\qquad \qquad $ )
A.\((2,3]\) \(\qquad \qquad\) B.\(\left(2,\dfrac{13}{6} \right]\) \(\qquad \qquad\) C.\(\left[\dfrac{7}{4},\dfrac{13}{6} \right]\) \(\qquad \qquad\) D.\(\left[\dfrac{7}{4},3 \right]\)
 

【解答】 因为\(ω>0\),当\(x\in \left(0,\dfrac{π}{3}\right)\)\(ωx+\dfrac{π}{3}\in \left(\dfrac{π}{3},\dfrac{π}{3}ω+\dfrac{π}{3}\right)\)
由函数\(f(x)\)\(\left(0,\dfrac{π}{3}\right)\)上存在零点,所以\(\dfrac{π}{3}ω+\dfrac{π}{3}>π\),解得\(ω>2\)
因为\(f(x)\)\(\left(0,\dfrac{π}{3}\right)\)上单调递增,故\(\left\{ \begin{array}{c} \dfrac{2π}{3}ω+\dfrac{π}{3}≥-\dfrac{π}{2}+2kπ\\ πω+\dfrac{π}{3}≤\dfrac{π}{2}+2kπ) \end{array} \right. \)\(k\in Z\)
解得\(-\dfrac{5}{4}+3k≤ω≤\dfrac{1}{6}+2k\)\(k\in Z\)
显然\(-\dfrac{5}{4}+3k≤\dfrac{1}{6}+2k\),所以\(k≤\dfrac{17}{12}\)
\(k≤0\)时,\(ω\)无解;当\(k=1\)时,可得\(2<ω≤\dfrac{13}{6}\)满足题意,
\(ω\)的取值范围为\(\left(2,\dfrac{13}{6} \right]\).
故选:\(B\).
 

【例3】 将函数\(f(x)=\cos \left(x+\dfrac{2π}{3}\right)\)图象上所有点的横坐标变为原来的\(\dfrac{1}{ω}(ω>0)\),纵坐标不变,所得图象在区间\(\left[0,\dfrac{2π}{3} \right]\)上恰有两个零点,且在\(\left[-\dfrac{π}{12},\dfrac{π}{12} \right]\)上单调递减,则\(ω\)的取值范围为( \(\qquad \qquad\)
A.\(\left[\dfrac{9}{4},3 \right]\) \(\qquad \qquad\) B.\(\left[\dfrac{9}{4},4\right)\) \(\qquad \qquad\) C.\(\left[\dfrac{11}{4},4 \right]\) \(\qquad \qquad\) D.\(\left(\dfrac{11}{4},6 \right]\)
 

【解答】 依题意可得\(y=\cos \left(ωx+\dfrac{2π}{3}\right)\)
因为\(0≤x≤\dfrac{2π}{3}\),所以\(\dfrac{2π}{3}≤ωx+\dfrac{2π}{3}≤\dfrac{2ω}{3}π+\dfrac{2π}{3}\)
因为\(y=\cos \left(ωx+\dfrac{2π}{3}\right)\)\(\left[0,\dfrac{2π}{3} \right]\)恰有\(2\)个零点,且\(\cos \left(\dfrac{π}{2}+k_1π\right)=0\)\(k_1\in Z\)
所以\(\dfrac{5π}{2}≤\dfrac{2ω}{3}π+\dfrac{2π}{3}<\dfrac{7π}{2}\),解得\(\dfrac{11}{4}≤ω<\dfrac{17}{4}\)
\(2k_2π≤ωx+\dfrac{2π}{3}≤π+2k_2π\)\(k_2\in Z\)

\(-\dfrac{2π}{3ω}+\dfrac{2k_2π}{ω}≤x≤\dfrac{π}{3ω}+\dfrac{2k_2π}{ω}\)\(k_2\in Z\)
\(k_2=0\),得\(y=\cos \left(ωx+\dfrac{2π}{3}\right)\)\(\left[-\dfrac{2π}{3ω},\dfrac{π}{3ω} \right]\)上单调递减,
所以\(\left[-\dfrac{π}{12},\dfrac{π}{12} \right]⊆ \left[-\dfrac{2π}{3ω},\dfrac{π}{3ω }\right]\)
所以\(\left\{ \begin{array}{c} -\dfrac{2π}{3ω}≤-\dfrac{π}{12}\\ \dfrac{π}{3ω}≥\dfrac{π}{12} \end{array} \right. \),又\(ω>0\),解得\(0<ω≤4\)
综上所述,\(\dfrac{11}{4}≤ω≤4\)
故选:\(C\).
 

posted @ 2026-01-23 20:54  湛江贵哥讲数学  阅读(4)  评论(0)    收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏