三角恒等变换的求角问题

专题:三角恒等变换 \(\qquad \qquad \qquad \qquad\) 题型:求角问题 \(\qquad \qquad \qquad \qquad\) 难度系数:★★★

经典例题讲解尽量从学生的角度出发,重在引导思考与总结!

【题目】

已知锐角\(α\)\(β\)满足\(2α+β=\dfrac{2π}{3}\),且\(\tan α\tan \dfrac{β}{2}=2-\sqrt{3}\),则\(β=\)( )

A.\(\dfrac{π}{12}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{π}{6}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{π}{4}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{π}{3}\)

 
 
 
 
 

【分析】

题中含\(α\)\(β\)的两条等式,想到“消元法”;由\(2α+β=\dfrac{2π}{3}\),可得\(α=\dfrac{π}{3}-\dfrac{β}{2}\)

\(\tan α=\tan⁡(\dfrac{π}{3}-\dfrac{β}{2})=\dfrac{\sqrt{3}-\tan \dfrac{β}{2}}{1+\sqrt{3} \tan \dfrac{β}{2}}\),所以\(\dfrac{\tan \dfrac{β}{2}(\sqrt{3}-\tan \dfrac{β}{2})}{1+\sqrt{3} \tan \dfrac{β}{2}} =2-\sqrt{3}\)

再用换元法,令\(x=\tan \dfrac{β}{2}\),得\(\dfrac{x(\sqrt{3}-x)}{1+\sqrt{3} x}=2-\sqrt{3}\)

就可求出\(x=\tan \dfrac{β}{2}\),进而便可利用正切二倍角公式求出\(\tan⁡β\).
 

【解答】

\(2α+β= \dfrac{2π}{3}\),可得\(α=\dfrac{π}{3}-\dfrac{β}{2}\),则\(\tan α=\tan⁡(\dfrac{π}{3}-\dfrac{β}{2})=\dfrac{\sqrt{3}-\tan \dfrac{β}{2}}{1+\sqrt{3} \tan \dfrac{β}{2}}\)

\(\tan α\tan \dfrac{β}{2}=2-\sqrt{3}\),所以\(\dfrac{\tan \dfrac{β}{2}(\sqrt{3}-\tan \dfrac{β}{2})}{1+\sqrt{3} \tan \dfrac{β}{2}} =2-\sqrt{3}\)

\(x=\tan \dfrac{β}{2}\),得\(\dfrac{x(\sqrt{3}-x)}{1+\sqrt{3} x}=2-\sqrt{3}⇒x^2+(\sqrt{3}-3)x+2-\sqrt{3}=0\)

解得\(x=1\)\(x=2-\sqrt{3}\),即\(\tan \dfrac{β}{2}=1\)\(\tan \dfrac{β}{2}=2-\sqrt{3}\)

\(\tan \dfrac{β}{2}=1\)时,因为\(0<β<\dfrac{π}{2}\),所以\(0<\dfrac{β}{2}<\dfrac{π}{4}\),此时\(β\)不存在;

\(\tan \dfrac{β}{2}=2-\sqrt{3}\)时,则\(\tanβ=\dfrac{2\tan \dfrac{β}{2}}{1-\tan^2 \dfrac{β}{2}} =\dfrac{2(2-\sqrt{3})}{1-(2-\sqrt{3})^2} =\dfrac{\sqrt{3}}{3}\)

因为\(β\)为锐角,所以\(β=\dfrac{π}{6}\).

(严谨些,要看看\(α\)是否也符合题意;因为\(β=\dfrac{π}{6}\),所以\(α=\dfrac{π}{3}-\dfrac{β}{2}=\dfrac{π}{4}\)也是锐角)

故选:\(B\).
 

posted @ 2026-01-16 16:55  湛江贵哥讲数学  阅读(2)  评论(0)    收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏