三角恒等变换的求角问题
专题:三角恒等变换 \(\qquad \qquad \qquad \qquad\) 题型:求角问题 \(\qquad \qquad \qquad \qquad\) 难度系数:★★★
【题目】
已知锐角\(α\),\(β\)满足\(2α+β=\dfrac{2π}{3}\),且\(\tan α\tan \dfrac{β}{2}=2-\sqrt{3}\),则\(β=\)( )
A.\(\dfrac{π}{12}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{π}{6}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{π}{4}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{π}{3}\)
【分析】
题中含\(α\),\(β\)的两条等式,想到“消元法”;由\(2α+β=\dfrac{2π}{3}\),可得\(α=\dfrac{π}{3}-\dfrac{β}{2}\),
则\(\tan α=\tan(\dfrac{π}{3}-\dfrac{β}{2})=\dfrac{\sqrt{3}-\tan \dfrac{β}{2}}{1+\sqrt{3} \tan \dfrac{β}{2}}\),所以\(\dfrac{\tan \dfrac{β}{2}(\sqrt{3}-\tan \dfrac{β}{2})}{1+\sqrt{3} \tan \dfrac{β}{2}} =2-\sqrt{3}\),
再用换元法,令\(x=\tan \dfrac{β}{2}\),得\(\dfrac{x(\sqrt{3}-x)}{1+\sqrt{3} x}=2-\sqrt{3}\),
就可求出\(x=\tan \dfrac{β}{2}\),进而便可利用正切二倍角公式求出\(\tanβ\).
【解答】
由\(2α+β= \dfrac{2π}{3}\),可得\(α=\dfrac{π}{3}-\dfrac{β}{2}\),则\(\tan α=\tan(\dfrac{π}{3}-\dfrac{β}{2})=\dfrac{\sqrt{3}-\tan \dfrac{β}{2}}{1+\sqrt{3} \tan \dfrac{β}{2}}\),
又\(\tan α\tan \dfrac{β}{2}=2-\sqrt{3}\),所以\(\dfrac{\tan \dfrac{β}{2}(\sqrt{3}-\tan \dfrac{β}{2})}{1+\sqrt{3} \tan \dfrac{β}{2}} =2-\sqrt{3}\),
令\(x=\tan \dfrac{β}{2}\),得\(\dfrac{x(\sqrt{3}-x)}{1+\sqrt{3} x}=2-\sqrt{3}⇒x^2+(\sqrt{3}-3)x+2-\sqrt{3}=0\),
解得\(x=1\)或\(x=2-\sqrt{3}\),即\(\tan \dfrac{β}{2}=1\)或\(\tan \dfrac{β}{2}=2-\sqrt{3}\),
当\(\tan \dfrac{β}{2}=1\)时,因为\(0<β<\dfrac{π}{2}\),所以\(0<\dfrac{β}{2}<\dfrac{π}{4}\),此时\(β\)不存在;
当\(\tan \dfrac{β}{2}=2-\sqrt{3}\)时,则\(\tanβ=\dfrac{2\tan \dfrac{β}{2}}{1-\tan^2 \dfrac{β}{2}} =\dfrac{2(2-\sqrt{3})}{1-(2-\sqrt{3})^2} =\dfrac{\sqrt{3}}{3}\),
因为\(β\)为锐角,所以\(β=\dfrac{π}{6}\).
(严谨些,要看看\(α\)是否也符合题意;因为\(β=\dfrac{π}{6}\),所以\(α=\dfrac{π}{3}-\dfrac{β}{2}=\dfrac{π}{4}\)也是锐角)
故选:\(B\).

浙公网安备 33010602011771号