圆的动点最值问题
专题:圆 \(\qquad \qquad \qquad \qquad\) 题型:动点最值问题 \(\qquad \qquad \qquad \qquad\) 难度系数:★★★
【题目】
如图,扇形\(ABC\)中\(∠BAC=120^\circ\),\(AB=6\sqrt{3}\),点\(P\)是弧\(BC\)上一动点,过\(P\)作\(PD⊥AC\),\(PE⊥AB\),
连接\(DE\),\(O\)是\(∆PDE\)的内心,则\(AO\)的最小值为\(\underline{\quad \quad}\) .

【分析】
动点问题,首先了解运动状态,把动点\(P\)“动起来”,了解各量确定与否;
该题的图象具有较强对称性,故可猜测点\(P\)在弧\(BC\)中点时,\(AO\)取到最小值.

\(AO_{min}=AB\times \sin30^\circ=6\sqrt{3} ×\dfrac{1}{2}=3\sqrt{3}\).
1 分析已知条件
①\(PD⊥AC\),\(PE⊥AB\)

易得\(P、D、A、E\)四点共圆,从而得到半径为\(\dfrac{AP}{2}=3\sqrt{3}\),\(∠DPE=180^\circ-∠DAE=60^\circ\),
定圆中定圆周角所对的弦是确定的,即\(DE\)是定值;怎么求呢?
\(DE=AP\cdot\sin∠DPE=6\sqrt{3} ×\dfrac{\sqrt{3}}{2}=9\)(此处用了高中正弦定理,可看后面的总结细讲).
②\(O\)是\(∆PDE\)的内心
遇到类似的已知条件,往往都会想到它的“定义与性质”;
由定义出发,可想到连接\(OP\)、\(OE\)(角平分线)或作\(OG⊥DP\)、\(OH⊥PE\)等;
由性质出发,会想到\(\dfrac{1}{2} rC_{∆PDE}=S_{∆PDE}\)(这在初中较为常见,后面的总结会给出证明),
\(∠DOE=180^\circ-\dfrac{180^\circ-∠DPE}{2}=90^\circ+\dfrac{∠DPE}{2}=120^\circ\)等;
结合以上分析可继续思考,能否得到更多信息或思考角度.
2 分析求证
要求\(AO\)的最小值,
思考角度有① 点\(A\)是定点,确定动点\(O\)轨迹(初中轨迹一般是线段或圆)便可,这是常规思路;
② 利用\(AO≥AP-OP=6\sqrt{3} -OP\),求\(OP\)的最大值,这想法符合一开始由图象对称性得到“点\(P\)在弧\(BC\)中点时,\(AO\)取到最小值”的猜测.
综上基本分析,会想到对\(\dfrac{1}{2} rC_{∆DPE}=S_{∆DPE}\)进一步思考,细看解答过程;
接着也作了各种尝试:
① 猜测动点\(O\)轨迹在线段\(BC\)上,依此为依据思考,只需证明\(∠OBA=30^\circ\)或者设线段\(BC\)与直线\(OP\)交于点\(G\)
再证明\(GE\)平分\(∠DEP\),纯几何方法技巧性较强;
② 引入变量,表示点\(O\)的位置(比如内切圆半径,或图中某个角),从而表示出\(AO\)再用代数方法求最小值或者确定点\(O\)轨迹是一种方法;
而建系法设点\(P(m,n)\)或\(P(6\sqrt{3} \cosα,6\sqrt{3} \sinα)\)也可考虑,但计算量过大.
【解答】
方法一 几何法
过点\(O\)作\(OG⊥DP\),\(OH⊥PE\),\(OT⊥DE\),连接\(OP\),

\(∵PD⊥AC\),\(PE⊥AB\),\(∴P、D、A、E\)四点共圆,

\(∴∠DPE=180^\circ-∠BAC=60^\circ\),\(DE=AP\cdot\sin∠DPE=6\sqrt{3} ×\dfrac{\sqrt{3}}{2}=9\),
\(∵O\)是\(∆PDE\)的内心,设内切圆\(O\)的半径为\(r\),
\(∴∠OPH=\dfrac{1}{2}∠DPE=30^\circ⇒PH=\sqrt{3} r\),\(OP=2r\),
\(C_{∆PDE}=DP+DE+EP=(DG+DT)+(EH+ET)+(PG+PH)\)
\(=2DT+2ET+2PH=2DE+2\sqrt{3} r=2\sqrt{3} r+18\),
\(\dfrac{1}{2} r C_{∆PDE}=S_{∆PDE}⇒\dfrac{1}{2} r(18+2\sqrt{3} r)=\dfrac{1}{2} DE\cdot h=\dfrac{9}{2} h\)(\(h\)为点\(P\)到\(DE\)的距离),
而\(h≤OP+OT=2r+r=3r\)(当\(A、O、P\)三点共线时取到等号),
\(∴\dfrac{1}{2} r(18+2\sqrt{3} r)=\dfrac{9}{2} h≤\dfrac{27}{2} r\),
\(∴r≤\dfrac{3\sqrt{3} }{2}\),
而\(OA+OP≥AP\)(当\(A、O、P\)三点共线时取到等号),
即\(OA+2r≥6\sqrt{3} ⇒OA≥6\sqrt{3} -2r≥6\sqrt{3} -2×\dfrac{3\sqrt{3} }{2}=3\sqrt{3}\).
方法二 纯几何法求动点轨迹
连接\(BC\),设\(OP\)交\(BC\)于\(G\),\(PD\)交\(BC\)于\(H\),\(PE\)交\(BC\)于\(F\),
(接着尝试证明\(∠PEG=∠GED\)从而得到\(O\)与\(G\)重合,即点\(O\)比在线段\(BC\)上)

\(∵∠GPE=\dfrac{1}{2}∠DPE=30^\circ\),\(∠ABC= \dfrac{180^\circ-∠BAC}{2}=30^\circ\),
\(∴∠GPE=∠ABC\),
\(∴G、E、B、P\)四点共圆,易得\(∆GFE \sim ∆PFB\),
\(∴\dfrac{GE}{PB}=\dfrac{EF}{BF}=\sin30^\circ =\dfrac{1}{2}\),
同理\(\dfrac{GD}{PC}=\dfrac{1}{2}\),
由方法1可得\(DE=9\),在\(∆ABC\)中易得\(BC=18\),\(∴ \dfrac{DE}{BC}=\dfrac{1}{2}\),
\(∴\dfrac{GE}{PB}=\dfrac{GD}{PC}= \dfrac{DE}{BC}\),\(∴∆GDE \sim ∆PCB\),\(∴∠GED=∠PBC\),
\(∵G、E、B、P\)四点共圆,\(∴∠PEG=∠PBC\),
\(∴∠PEG=∠GED\),即点\(G\)在\(∠PED\)的角平分线上,
又\(∵\)点\(G\)在\(∠DPE\)的角平分线上,
\(∴\)点\(G\)是\(∆PDE\)的内心,
又\(∵O\)是\(∆PDE\)的内心,
\(∴\)点\(O\)与点\(G\)重合,
\(∴\)点\(O\)比在直线\(BC\)上,(即点\(O\)的轨迹为线段\(BC\)上某一线段)
\(∴AO\)的最小值为点\(A\)到直线\(BC\)的距离\(\dfrac{1}{2} AB=3\sqrt{3}\).
(严谨要检验下是否能够取到最小值的点\(P\),其实就是当点\(P\)为弧\(BC\)中点的时候)
方法三 建系法+求动点轨迹
预备知识:
① 斜率为\(k\),且过点\((m,n)\)的直线解析式为\(y=k(x-m)+n\);
② 点\((x_0,y_0 )\)到直线\(Ax+By+C=0\)的距离\(d= \dfrac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}\).
以点\(A\)为原点,\(AB\)所在直线为\(x\)轴,如图建立直角坐标系,

设点\(P(m,n)\),直线\(BC\)与直线\(OP\)交于点\(O'\),
由\(AP=6\sqrt{3}\)可得\(m^2+n^2=108\),
同方法一可得\(∠O' PE=30^\circ\),\(∴∠PFE=60^\circ\),
\(∴\)直线\(O' P\)的解析式为\(y=\sqrt{3} (x-m)+n\),
易得点\(B(6\sqrt{3} ,0)\),\(∠CBA=30^\circ\),
\(∴\)直线\(BC\)的解析式为\(y=- \dfrac{\sqrt{3}}{3} x+6\),
由\(\left\{
\begin{array}{c}
y=\sqrt{3} (x-m)+n\\
y=- \dfrac{\sqrt{3}}{3} x+6
\end{array}
\right.
\),解得\(\left\{
\begin{array}{c}
x=\dfrac{\sqrt{3} }{4}(6+\sqrt{3} m-n)\\
y=6- \dfrac{1}{4} (6+\sqrt{3} m-n)
\end{array}
\right.
\),
即点\(O'\)的坐标为\(\left(\dfrac{\sqrt{3} }{4}(6+\sqrt{3} m-n),6- \dfrac{1}{4} (6+\sqrt{3} m-n)\right)\),
\(∵\)直线\(AC\)的解析式为\(y=-\sqrt{3} x\),直线\(PD\)的解析式为\(y= \dfrac{\sqrt{3}}{3} (x-m)+n\),
由\(\left\{
\begin{array}{c}
y=-\sqrt{3} x\\
y= \dfrac{\sqrt{3}}{3} (x-m)+n)
\end{array}
\right.
\),解得\(\left\{
\begin{array}{c}
x= \dfrac{m}{4}- \dfrac{\sqrt{3} n}{4} \\
y=- \dfrac{\sqrt{3} m}{4}+ \dfrac{3n}{4}
\end{array}
\right.
\),
即点\(D\)的坐标为\(\left(\dfrac{m}{4}-\dfrac{\sqrt{3}n}{4},- \dfrac{\sqrt{3}m}{4}+ \dfrac{3n}{4}\right)\),
又\(∵E(m,0)\),
\(∴\)直线\(DE\)的解析式为\(y=\dfrac{m-\sqrt{3} n}{\sqrt{3} m+n} (x-m)⟹(\sqrt{3} m+n)y+(\sqrt{3} n-m)x+m(m-\sqrt{3} n)=0\),
\(∴\)点\(O'(\dfrac{\sqrt{3} }{4}(6+\sqrt{3} m-n),6- \dfrac{1}{4} (6+\sqrt{3} m-n))\)到直线\(DE\)的距离为
\(O'G= \dfrac{\left |(\sqrt{3} m+n)\left [6- \dfrac{1}{4} (6+\sqrt{3} m-n)\right]+(\sqrt{3} n-m)\cdot \dfrac{\sqrt{3} }{4}(6+\sqrt{3} m-n)+m(m-\sqrt{3} n)\right|}{\sqrt{(\sqrt{3} m+n)^2+(\sqrt{3} n-m)^2 }}\)\(=\dfrac{m+\sqrt{3} n-6\sqrt{3}}{4}\),
而点\(O'\)到直线\(PE\)的距离为\(O' H=m-\dfrac{\sqrt{3} }{4}(6+\sqrt{3} m-n)=\dfrac{m+\sqrt{3} n-6\sqrt{3}}{4}\),
\(∴O' G=O' H\),即点\(O'\)在\(∠PED\)的角平分线上,
而点\(O'\)也在\(∠EPD\)的角平分线上,
\(∴\)点\(O'\)是\(∆PDE\)的内心,即点\(O\)与点\(O'\)重合,即点\(O\)的轨迹为直线\(BC\)上某一线段,
\(∴AO\)的最小值为点\(A\)到直线\(BC\)的距离\(\dfrac{1}{2} AB=3\sqrt{3}\).
【总结】
- 正弦定理:在\(∆ABC\)中,\(\dfrac{a}{\sinA} =\dfrac{b}{\sinB} = \dfrac{c}{\sinC}=2r\)(\(r\)为\(∆ABC\)外接圆的半径)

本题中求\(DE\)不要正弦定理,初中知识证明也可以,连接\(OD\),延长\(DO\)交圆于点\(G\),

- 在\(RT∆DGE\)中,\(DE=DG\cdot \sin∠G=AP\cdot \sin60^\circ=6\sqrt{3} ×\dfrac{\sqrt{3}}{2}=9\);
其实高中的正弦定理也可以采取近似方法证明.
若点\(O\)是\(∆ABC\)内心,则\(S_{∆ABC}=\dfrac{1}{2} rC_{∆ABC}\)(\(r\)为\(∆ABC\)内切圆的半径).
简证:如下图,$S_{∆ABC}=S_{∆AOB}+S_{∆BOC}+S_{∆AOC}=\dfrac{1}{2}\cdot r\cdot AB+\dfrac{1}{2}\cdot r\cdot BC+\dfrac{1}{2}\cdot r\cdot AC $$=\dfrac{1}{2}\cdot r(AB+BC+AC)=\dfrac{1}{2} rC_{∆ABC}$.

- 方法一中解答过程其实用到了两次不等式:\(h≤OP+OT\)和\(OA+OP≥AP\),要注意严谨,它们取到等号的时候必须是同一情况下取到的.
- 其实动点\(O\)在直线\(BC\)上不受\(∠BAC=120^\circ\),\(AB=6\sqrt{3}\)的影响.

简证:如方法二,设\(∠CAB=α\),\(AB=r\),
\(∵A,E,P,D\)四点共圆,\(∴DE=AP\cdot \sin∠DPE=r\cdot \sin(180^\circ-α)=r\cdot \sinα\),
在\(∆ABC\)中,易得\(BC=2AB\cdot \cos∠CBA=2AB\cdot \cos \dfrac{180^\circ-α}{2} =2r\cdot \sin \dfrac{α}{2}\),
\(∴ \dfrac{DE}{BC}=\dfrac{r\cdot \sinα}{2r\cdot \sin \dfrac{α}{2}} =\cos \dfrac{α}{2}\),
\(∵B,E,G,P\)四点共圆,\(∴∆GFE \sim ∆PFB\),
\(∴\dfrac{GE}{PB}=\dfrac{EF}{BF}=\sin\dfrac{180^\circ-α}{2} =\cos \dfrac{α}{2}\),
同理\(\dfrac{DG}{PC}= \cos \dfrac{α}{2}\),
\(∴ \dfrac{DE}{BC}=\dfrac{GE}{PB}= \dfrac{DG}{PC}\),\(∴∆GDE \sim ∆PCB\),
\(∴∠GED=∠PBC=∠GEP\),即点\(G\)在\(∠PED\)的角平分线上,
\(∴\)点\(O\)与点\(G\)重合,即点\(O\)比在直线\(BC\)上.

浙公网安备 33010602011771号