二次函数动点问题(25年大连模拟)

专题:二次函数\(\qquad \qquad \qquad \qquad\) 题型:动点问题 \(\qquad \qquad \qquad \qquad\)难度系数:★★★★★

 

【题目】

(2025•大连模拟) 如图,抛物线\(y=-x^2+bx+c\)的对称轴为直线\(x=-1\),抛物线与\(x\)轴一个交点为\(A(-3,0)\),另一个交点为\(B\),与\(y\)轴交于点\(C\),抛物线的顶点为\(D\)

(1)求抛物线的表达式;

(2)如图1,点\(E\)在抛物线的对称轴上,\(∠BEC=90^\circ\),求点\(E\)的坐标;

(3)如图2,连接\(AC\)\(DC\),延长\(DC\)\(x\)轴于点\(F\),点\(G\)在线段\(AC\)上,连接\(FG\),将线段\(FG\)绕点\(F\)逆时针旋转\(90^\circ\)得到线段\(FG'\),当点\(G'\)在抛物线上时,求点\(G'\)的坐标;

(4)如图3,点\(H\)在第一象限的抛物线上,过\(H\)\(HM⊥x\)轴于\(M\),交\(BD\)于点\(N\),点\(Q\)在线段\(AD\)上,连接\(NQ\),满足\(∠ABD-∠DNQ=45^\circ\)\(NQ\)与抛物线的对称轴交于点\(P\)
①求\(∠DPQ\)的度数;
②若\(BN=DQ\),求点\(H\)的坐标.
 
 
 
 

【解答】

第一问: 易得抛物线的表达式为\(y=-x^2-2x+3\)
 

第二问: 方法1 一线三垂直模型

如图1,设直线\(x=-1\)\(x\)轴于点\(N\),点\(E\)在抛物线的对称轴上,\(∠BEC=90^\circ\),过\(C\)\(CM\)垂直直线\(x=-1\)\(M\),即\(∠CME=90^\circ\)

\(∴∠BEC=∠BNE=90^\circ\)\(∴∠CEM=∠EBN\)
\(∵∠CME=∠BNE\)\(∴△CME∽△ENB\)\(∴\dfrac{CM}{EN}=\dfrac{ME}{BN}\)
\(∵A(-3,0)\),抛物线对称轴为直线\(x=-1\)

\(∴B(1,0)\)\(∴BN=2\)
\(∵C(0,3)\)\(∴OC=MN=3\)
\(∵CM=1\)\(∴\dfrac{1}{EN} =\dfrac{3-EN}{2}\)

\(∴EN^2-3EN+2=0\),解得:\(EN=2\)\(EN=1\)(经检验符合题意),
\(∴E_1(-1,1)\)\(E_2(-1,2)\)
 

方法2 勾股定理

易得\(B(1,0)\)\(C(0,3)\),设\(E(-1,m)\)
\(∵∠BEC=90^\circ\)\(∴BC^2=BE^2+EC^2\)

\(10=4+m^2+1+(m-3)^2\),解得:\(m=2\)\(m=1\)(经检验符合题意),

\(∴E_1(-1,1)\)\(E_2(-1,2)\)
 

方法3 斜率法

\(∵∠BEC=90^\circ\)\(∴k_{BE}k_{CE}=-1\)

\(∴\dfrac{m}{-2}\times \dfrac{m-3}{-1}=-1\),解得:\(m=2\)\(m=1\)(经检验符合题意),
\(∴E_1(-1,1)\)\(E_2(-1,2)\)
 

第三问:

方法1

\(x=-1\)时,得\(y=-1+2+3=4\)\(∴D(-1,4)\)
\(∵C(0,3)\)
设直线\(CD\)的解析式为\(y=kx+3\)

将点\(D\)的坐标代入得:\(-1=4x+3\),解得:\(k=-1\)
\(∴\)直线\(CD\)的解析式为\(y=-x+3\)
\(∴F(3,0)\)\(∴OA=OF\)
\(∵CO⊥AF\)\(∴CA=CF\)
\(∵OA=OC\)\(∴∠CAO=45^\circ\)
\(∴∠AFC=45^\circ\)
如图2,过\(F\)\(FM⊥AF\)\(AC\)延长线于\(M\),连接\(AG'\)

\(FM=FA\)\(∠M=45^\circ\)\(∠MFA=∠GFG'=90^\circ\)

\(∴∠MFG=∠AFG'\)
\(△MFG\)\(△AFG'\)中,\(\left\{ \begin{array}{c} FG=FG'\\ ∠MFG=∠AFG'\\ FM=FA \end{array} \right. \)
\(∴△MFG≌△AFG'(SAS)\)
\(∴∠FAG'=45^\circ\)
\(∴AG'∥FC\)
设直线\(AG'\)的解析式为\(y=-x+n\)
将点\(A\)的坐标代入得:\(0=3+n\),解得:\(n=-3\)
\(∴\)直线\(AG'\)的解析式为\(y=-x-3\)
联立得:\(\left\{ \begin{array}{c} y=-x-3\\ y=-x^2-2x+3 \end{array} \right. \),解得:\(\left\{ \begin{array}{c} x_1=-3\\ y_1=0 \end{array} \right. \)\(\left\{ \begin{array}{c} x_2=2\\ y_2=-5 \end{array} \right. \)
\(∴G'(2,-5)\)

 

方法2

由方法1可知\(F(3,0)\)
\(∵A(-3,0)\)\(C(0,3)\)

\(∴\)直线\(AC\)的解析式为\(y=x+3\),可设\(G(n,n+3)\)
\(G\)\(GM⊥AF\),过\(G'\)\(GN⊥AF\)

易得\(△MFG≌△NG'F\)
\(∴NG'=MF=3-n\)\(NF=MG=n+3⇒ON=-n\)

\(∴G'(-n,n-3)\),
代入抛物线\(y=-x^2-2x+3\)\(n-3=-n^2+2n+3\)

解得\(n=2\)\(n=3\)(舍去),
\(∴G'(2,-5)\)
 

第四问:

\(∵HM⊥x\)轴,\(∴HM∥PD\)\(∴∠MNB=∠BDP\)
\(∠MNB=∠BDP=α\)\(∴∠ABD=90^\circ-∠MNB=90^\circ-α\)
\(∵∠ABD-∠BNQ=45^\circ\)

\(∴∠DNQ=∠ABD-45^\circ=90^\circ-α-45^\circ=45^\circ-α\)
\(∴∠DPQ=∠DNQ+∠BDP=45^\circ-α+α=45^\circ\)
②如图3.过\(Q\)\(QJ⊥DP\)\(J\),过\(N\)\(NI⊥DP\)\(I\),设\(DP\)\(AB\)\(R\)

\(∵AD=BD\)\(DR⊥AB\)\(∴∠ADR=∠BDR=∠BNM\)
\(∵HM⊥x\)轴,\(QJ⊥DP\)\(∴∠NMB=∠DJQ=90^\circ\)
\(△BNM\)\(△QDJ\)中,\(\left\{ \begin{array}{c} ∠BNM=∠QDJ\\ ∠NMB=∠DJQ\\ BN=QD \end{array} \right. \)
\(∴△BNM≌△QDJ(AAS)\)
\(∴BM=QJ\)\(MN=DJ\)
\(H(t,-t^2-2t+3)\)\(∴BM=QJ=1-t\)
\(∵\dfrac{AR}{DR}=\dfrac{2}{4}=\dfrac{1}{2}\)\(∴\dfrac{DQ}{DJ}=\dfrac{1}{2}\)\(∴DJ=MN=2-2t\)
\(∵∠DPQ=∠BPR=45^\circ\)

(其实得到\(∠DPQ=45^\circ\),从斜率的角度很容易得到\(k_{QN}=-1\))
\(∴PJ=QJ=1-t\)\(NI=MR=PI=t+1\)\(RI=MN=2-2t\)
\(∴DR=DJ+PJ+PI+RI=4\)
\(∴2-2t+1-t+t+1+2-2t=4\),解得:\(t=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)时,\(y=-(\dfrac{1}{2})^2-2×\dfrac{1}{2}+3=\dfrac{7}{4}\)
\(∴H(\dfrac{1}{2}, \dfrac{7}{4})\)
 

posted @ 2026-01-06 10:46  湛江贵哥讲数学  阅读(8)  评论(0)    收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏