25年湛江一模第19题(马尔可夫链 )
专题:概率+数列 \(\qquad \qquad \qquad \qquad\) 题型:马尔可夫链 \(\qquad \qquad \qquad \qquad\) 难度系数:★★★★
题目
(25 年湛江一模第 19 题)甲参加了一场智力问答游戏,每轮游戏均有两类问题(难度系数较低的\(A\)类问题以及难度系数较高的\(B\)类问题)供选择,且每轮游戏只回答两类问题中的其中一个问题。甲遇到每类问题的概率均为\(\dfrac{1}{2}\)。甲遇到\(A\)类问题时回答正确的概率为\(\dfrac{1}{2}\),回答正确记 1 分,否则记 0 分;甲遇到\(B\)类问题时回答正确的概率为\(\dfrac{1}{4}\),回答正确记 2 分,否则记 0 分。总得分记为\(X\)分.甲回答每个问题相互独立.
(1)当进行完 2 轮游戏时,求甲的总分\(X\)的分布列与数学期望.
(2)设甲在每轮游戏中均回答正确且累计得分为\(n\)分的概率为\(G(n)\).
(i)证明:\(\left\{G(n+1)-\dfrac{1}{2} G(n)\right\}\)为等比数列。
(ii)求\(G(n)\)的最大值以及对应\(n\)的值.
解析
第一问
遇到类似很多种情况的概率问题,可以用列表或树状图的形式梳理,避免拉下某种情况:

若能做到思路清晰,也没必要这样做.
\(X\)的取值可能是\(0,1,2,3,4\),
每次回答\(A\)类问题且答对的概率为\(\dfrac{1}{2} \times \dfrac{1}{2}=\dfrac{1}{4}\),
回答\(A\)类问题且答不对的概率为\(\dfrac{1}{2} \times \dfrac{1}{2}=\dfrac{1}{4}\).
每次回答\(B\)类问题且答对的概率为\(\dfrac{1}{2} \times \dfrac{1}{4}=\dfrac{1}{8}\),
回答\(B\)类问题且答不对的概率为\(\dfrac{1}{2} \times \dfrac{3}{4}=\dfrac{3}{8}\).
$P(X=0)=\dfrac{1}{4} \times \dfrac{1}{4}+\dfrac{3}{8} \times \dfrac{3}{8}+2 \times \dfrac{1}{4} \times \dfrac{3}{8}=\dfrac{25}{64} $;
\(P(X=1)=\dfrac{1}{4} \times \dfrac{1}{4} \times 2+\dfrac{1}{4} \times \dfrac{3}{8} \times 2=\dfrac{5}{16}\) ;
$P(X=2)=\dfrac{1}{4} \times \dfrac{1}{4}+\dfrac{1}{8} \times \dfrac{3}{8} \times 2+\dfrac{1}{4} \times \dfrac{1}{8} \times 2=\dfrac{7}{32} $;
\(P(X=3)=\dfrac{1}{4} \times \dfrac{1}{8} \times 2=\dfrac{1}{16}\);
\(P(X=4)=\dfrac{1}{8} \times \dfrac{1}{8}=\dfrac{1}{64}\).
\(X\)的分布列为:
| \(X\) | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| \(P\) | \(\dfrac{25}{64}\) | \(\dfrac{5}{16}\) | \(\dfrac{7}{32}\) | \(\dfrac{1}{16}\) | \(\dfrac{1}{64}\) |
\(E(X)=0 \times \dfrac{25}{64}+1 \times \dfrac{5}{16}+2 \times \dfrac{7}{32}+3 \times \dfrac{1}{16}+4 \times \dfrac{1}{64}=1\).
第二问
典型的马尔可夫链问题,只要梳理好题意.
(i)
\(G(1)=\dfrac{1}{4}, G(2)=\dfrac{1}{8}+\dfrac{1}{4} \times \dfrac{1}{4}=\dfrac{3}{16}\)(一次答对\(B\)类题,两次答对\(A\)类题).
由题意得甲累计得分为\(n\)分的前一轮得分只能为\((n-1)\)分或\((n-2)\)分,
故当\(n \geqslant 3\)时,\(G(n)=\dfrac{1}{4} G(n-1)+\dfrac{1}{8} G(n-2)\),
(要得到\(n\)分,由\(n-2\)分再答对一次\(B\)类题或\(n-1\)分时再答对一次 \(A\)类题)
所以\(G(n)-\dfrac{1}{2} G(n-1)=-\dfrac{1}{4} G(n-1)+\dfrac{1}{8} G(n-2)=-\dfrac{1}{4}\left[G(n-1)-\dfrac{1}{2} G(n-2)\right]\),
(证明等比数列,利用定义法;若要构造,则利用待定系数法也可)
所以\(\left\{G(n+1)-\dfrac{1}{2} G(n)\right\}\)是以\(\dfrac{1}{16}\)为首项,\(\dfrac{1}{4}\)为公比的等比数列.
(ii)
要求\(G(n)\)的最值,可以由(i)可得到数列\(\{G(n)\}\)的递推公式,进而求出\(G(n)\)通项公式,在利用数列的单调性或构造函数分析单调性求最值.如何由三项递推公式求出通项公式是个难点,以下给出两个方法.
方法 1
根据(1)可知,\(G(n+1)-\dfrac{1}{2} G(n)=\dfrac{1}{16} \times\left(-\dfrac{1}{4}\right)^{n-1}=\left(-\dfrac{1}{4}\right)^{n+1}(1)\).
由\(G(n)=\dfrac{1}{4} G(n-1)+\dfrac{1}{8} G(n-2)\),
也可得\(G(n)+\dfrac{1}{4} G(n-1)=\dfrac{1}{2} G(n-1)+\dfrac{1}{8} G(n-2)=\dfrac{1}{2}\left[G(n-1)+\dfrac{1}{4} G(n-2)\right]\),
所以\(\left\{G(n+1)+\dfrac{1}{4} G(n)\right\}\)是以\(\dfrac{1}{4}\)为首项,\(\dfrac{1}{2}\)为公比的等比数列,
(由递推公式\(G(n)=\dfrac{1}{4} G(n-1)+\dfrac{1}{8} G(n-2)\)可构造出两个等比数列)
所以\(G(n+1)+\dfrac{1}{4} G(n)=\dfrac{1}{4} \times\left(\dfrac{1}{2}\right)^{n-1}=\left(\dfrac{1}{2}\right)^{n+1}\)(2).
令(2)-(1)可得\(\dfrac{3}{4} G(n)=\left(\dfrac{1}{2}\right)^{n+1}-\left(-\dfrac{1}{4}\right)^{n+1}\),
所以\(G(n)=\dfrac{1}{3} \times\left(\dfrac{1}{2}\right)^{n-1}+\dfrac{1}{3} \times\left(-\dfrac{1}{4}\right)^{n}\).(数形结合,显然是个摆动数列)
经检验\(n=1, n=2\)时均满足上式,故\(G(n)=\dfrac{1}{3} \times\left[\left(-\dfrac{1}{4}\right)^{n}+\left(\dfrac{1}{2}\right)^{n-1}\right]\),
所以\(G(n)=\dfrac{1}{3} \times\left[\left(-\dfrac{1}{4}\right)^{n}+\left(\dfrac{1}{2}\right)^{n-1}\right] \leqslant \dfrac{1}{3} \times\left[\left(\dfrac{1}{4}\right)^{n}+\left(\dfrac{1}{2}\right)^{n-1}\right]\),
而\(\dfrac{1}{3} \times\left[\left(\dfrac{1}{4}\right)^{n}+\left(\dfrac{1}{2}\right)^{n-1}\right]\)显然随着\(n\)的增大而减小,
故\(G(n) \leqslant \dfrac{1}{3} \times\left[\left(\dfrac{1}{4}\right)^{2}+\dfrac{1}{2}\right]=\dfrac{3}{16}=G(2)(n \geqslant 2)\).
又因为\(G(1)>G(2)\),
所以当\(n=1\)时,\(G(n)\)取到最大值,为\(\dfrac{1}{4}\).
方法2 迭代
求\(G(n)\)通项公式可用迭代,其他地方的求解如方法 1 .
\(G(n+1)\)
\(=\dfrac{1}{2} G(n)+\left(-\dfrac{1}{4}\right)^{n+1}\)
\(=\dfrac{1}{2}\left[\dfrac{1}{2} G(n-1)+\left(-\dfrac{1}{4}\right)^{n}\right]+\left(-\dfrac{1}{4}\right)^{n+1}=\dfrac{1}{2^{2}} G(n-1)+(-2) \cdot\left(-\dfrac{1}{4}\right)^{n+1}+\left(-\dfrac{1}{4}\right)^{n+1}\)
\(=\dfrac{1}{2^{2}}\left[\dfrac{1}{2} G(n-2)+\left(-\dfrac{1}{4}\right)^{n-1}\right]+(-2) \cdot\left(-\dfrac{1}{4}\right)^{n+1}+\left(-\dfrac{1}{4}\right)^{n+1}\)
\(=\dfrac{1}{2^{3}} G(n-2)+(-2)^{2} \cdot\left(-\dfrac{1}{4}\right)^{n+1}+(-2) \cdot\left(-\dfrac{1}{4}\right)^{n+1}+\left(-\dfrac{1}{4}\right)^{n+1}\)
\(=\dfrac{1}{2^{2}} G(1)+\left[(-2)^{n-1}+\cdots+(-2)^{2}+(-2)+1\right] \cdot\left(-\dfrac{1}{4}\right)^{n+1}\)
\(=\dfrac{1}{3} \times\left(\dfrac{1}{2}\right)^{n}+\dfrac{1}{3} \times\left(-\dfrac{1}{4}\right)^{n+1}\).
所以\(G(n)=\dfrac{1}{3} \times\left[\left(-\dfrac{1}{4}\right)^{n}+\left(\dfrac{1}{2}\right)^{n-1}\right]\).

浙公网安备 33010602011771号