抽象函数中图象变换的应用

一 问题引入

在高一学函数性质时,我们会遇到一些抽象函数的问题,先看两道例题:
【例1】已知函数\(f\left(2x+1\right)\)的定义域为\(\left[1,2\right]\),则函数\(f\left(4x+1\right)\)的定义域是\(\underline{\quad \quad}\).

【例2】已知函数\(f\left(x\right)\)的定义域为\(\mathrm{R}\),且\(f\left(2x-1\right)\)的图象关于直线\(x=1\)对称,\(f\left(3x+2\right)\)是奇函数,则下列选项中值一定为\(0\)的是( )
A.\(f\left(\dfrac{7}{2}\right)\) \(\qquad \qquad \qquad\) B.\(f\left(2024\right)\) \(\qquad \qquad \qquad\) C.\(f\left(1\right)\) \(\qquad \qquad \qquad\) D.\(f\left(\dfrac{3}{2}\right)\)
以上两题中没告知函数解析式,我们可以利用函数图象变换的方法处理类似的问题.
 

二 图象变换

图象变换包括平移变换、伸缩变换、对称变换和翻转变换,我们只需了解前两种变换.
(等我们学了必修第一册第五章三角函数会有更好的理解)
回忆下,我们刚学一次函数\(y=kx+b(k\neq0)\)时,是如何知道图象是一直线的呢?
就是“列表—描点—连线”!
 

1 平移变换

我们知道平移变换口诀:左加右减,上加下减,
Eg1:\(y=f(x)\)向左平移\(1\)个单位,向下平移\(2\)个单位后的函数是\(y=f(x+1)-2\)
Eg2:\(y=f(2x-4)\)向左平移\(1\)个单位后的函数是\(y=f[2(x+1)-4]=f(2x-2)\)
为什么不是\(y=f(2x+1-4)=f(2x-3)\)
用描点的方式了解下(不太严谨),
角度1
假设\(y=f\left(2x-4\right)\)\(y=2x-4\),其图象向左平移\(1\)个单位后,如下图显然平移变换后的函数是\(y=2x-2\).

角度2
若点\((x_0,y_0)\)\(y=f(2x-4)\)图象上,则\(y_0=f(2x_0-4)\);而点\((x_0,y_0)\)经过平移变换“向左平移\(1\)个单位”后是\((x_0-1,y_0)\),显然点\((x_0-1,y_0)\)\(y=f(2x-2)\)图象上而不是\(y=f(2x-3)\).
简而言之,“左加右减”是对\(x\)进行加减,\(y=f[2\)(\(x+1\))\(-4]\)中的小括号不能不要.
 

2 伸缩变换

\(y=f(x)\)的图象要伸缩变换:纵坐标\(y\)不变横坐标\(x\)扩大\(2\)倍,即\((x,y)\)会变成\((2x,y)\),它的解析式会是什么?
用具体例子感受下,
\(y=x^2\)经过伸缩变换:纵坐标\(y\)不变横坐标\(x\)扩大\(2\)倍,点\(A(1,1)\)到点\(B(2,1)\)
\((x_0,y_0)\)\(y=x^2\)图象上,则\(y_0={x_0}^2\),变换后对应的点\((x_1,y_1)\),有\(\left\{\begin{array}{l} x_1=2 x_0 \\ y_1=y_0 \end{array}\right.\)
\(\left\{\begin{array}{l} x_0=\dfrac{x_1}{2} \\ y_0=y_1 \end{array}\right.\),所以\(y_1={\left(\dfrac{x_1}{2}\right)}^2=\dfrac{x_1^2}{4}\),故变换后的函数解析式为\(y=\dfrac{x^2}{4}\).

\(y=x^2\)经过伸缩变换:纵坐标\(y\)不变横坐标\(x\)缩小到原来的\(\dfrac{1}{2}\),点\((1,1)\)到点\((2,1)\)
变换后的函数解析式为\(y={(2x)}^2=4x^2\).

简而言之,将\(y=f(x)\)的图象上各点的横坐标伸长\((0<b<1)\)或缩短\((b>1)\)到原来的\(\dfrac{1}{b}\)倍,而纵坐标不变,得到函数\(y=f(bx)\)的图象.
若将\(y=f(x)\)的图象上各点的纵坐标伸长\((a>1)\)或缩短\((0<a<1)\)到原来的\(a\)倍,而横坐标不变,得到函数\(y=af(x)\)的图象.
 

三 图象变换的逆运用

我们知道了函数图象经过平移变换或伸缩变换后函数解析式的变换.
那函数\(y=f(2x-2)\)如何变换后变成函数\(y=f(x)\)呢?
方法1 先平移后伸缩
\(y=f(2x-2)=f[2(x-1)]\)向左平移\(1\)个单位得到\(y=f(2x)\),再横坐标\(x\)扩大\(2\)倍得到\(y=f(x)\).
方法2 先伸缩后平移
\(y=f(2x-2)\)横坐标\(x\)扩大\(2\)倍得到\(y=f(x-2)\),再向左平移\(2\)个单位得到\(y=f(x)\).
 

四 问题的解决

我们了解了以上两点,现在试试如何解决一开始提出的两个问题,
【例1】已知函数\(f\left(\dfrac{x}{2}+1\right)\)的定义域为\(\left[-1,2\right]\),则函数\(f\left(2x+1\right)\)的定义域是\(\underline{\quad \quad}\) .
利用图象变换求解,
函数\(f\left(\dfrac{x}{2}+1\right)=f\left[\dfrac{1}{2}\left(x+2\right)\right]\)的定义域为\(\left[-1,2\right]\)
\(\stackrel {向右平移2个单位}{\Longrightarrow}\)\(f\left(\dfrac{x}{2}\right)\)的定义域为\([1,4]\)
\(\stackrel {横坐标缩小到原来的\frac{1}{4}}{\Longrightarrow}\)\(f\left(2x\right)\)的定义域为\(\left[\dfrac{1}{4},1\right]\)
\(\stackrel {向左平移\frac{1}{2}个单位}{\Longrightarrow}\)\(f\left(2x\right)\)的定义域为\(\left[-\dfrac{1}{4},\dfrac{1}{2}\right]\)
故答案为\(\left[-\dfrac{1}{4},\dfrac{1}{2}\right]\).
 

【例2】已知函数\(f\left(x\right)\)的定义域为\(\mathrm{R}\),且\(f\left(2x-1\right)\)的图象关于直线\(x=1\)对称,\(f\left(3x+2\right)\)是奇函数,则下列选项中值一定为\(0\)的是( )
A.\(f\left(\dfrac{7}{2}\right)\) \(\qquad \qquad \qquad\) B.\(f\left(2024\right)\) \(\qquad \qquad \qquad\)C.\(f\left(1\right)\) \(\qquad \qquad \qquad\) D.\(f\left(\dfrac{3}{2}\right)\)
由的图象关于直线\(x=1\)对称
\(\stackrel {向左平移\frac{1}{2}个单位}{\Longrightarrow}\)\(f\left(2x\right)\)的图象关于直线\(x=\dfrac{1}{2}\)对称
\(\stackrel {横坐标扩大2倍}{\Longrightarrow}\)\(f\left(x\right)\)的图象关于直线\(x=1\)对称

\(f\left(3x+2\right)\)是奇函数,关于\((0,0)\)对称
\(\stackrel {向右平移\frac{2}{3}个单位}{\Longrightarrow}\)\(f\left(3x\right)\)的图象关于\(\left(\dfrac{2}{3},0\right)\)对称
\(\stackrel {横坐标扩大3倍}{\Longrightarrow}\)\(f\left(x\right)\)的图象关于\((2,0\))对称

\(f\left(x\right)\)的图象关于直线\(x=1\)对称,且关于\((2,0)\)对称,
假设当\(0<x<1\)时,\(y=x\),反复使用以上两点,结合图象可得函数\(f\left(x\right)\)周期为\(4\).

\(f\left(2024\right)=f(0)=0\).

\(f\left(\dfrac{7}{2}\right)=f\left(-\dfrac{1}{2}\right)=-f\left(\dfrac{3}{2}\right)\)\(f\left(1\right)\)都不确定是否为\(0\)
故选:\(B\).
 

问题的另解
【例1】因为函数\(f\left(\dfrac{x}{2}+1\right)\)的定义域为\(\left[-1,2\right]\),即\(x\in\left[-1,2\right]\),所以\(\dfrac{x}{2}+1\in\left[\dfrac{1}{2},2\right]\)
\(\dfrac{1}{2}\le2x+1\le2\)解得\(-\dfrac{1}{4}\le x\le\dfrac{1}{2}\)

所以函数\(f\left(4x+1\right)\)的定义域为\(\left[-\dfrac{1}{4},\dfrac{1}{2}\right]\).
 

【例2】\(f\left(2x-1\right)\)的图象关于直线\(x=1\)对称,
\(f\left(2x-1\right)=f\left(2(-x+2)-1\right)=f(-2x+3)\).
\(f\left(2x-1\right)=f\left(2(-x+2)-1\right)=f(-(2x-1)+2)\)
\(t=2x-1\),则\(f\left(t\right)=f(-t+2)\)
\(f\left(x\right)\)也关于\(x=1\)对称.
\(f\left(3x+2\right)\)是奇函数,
\(f\left(3x+2\right)+f(-3x+2)=0\)\(f\left(3x+2\right)+f(-(3x+2)+4)=0\)
\(t=3x+2\),则\(f\left(t\right)+f(-t+4)=0\),则\(f\left(x\right)\)也关于\((2,0)\)对称.
且令\(t=2\),得\(f(2)=0\).
由前面知道\(f\left(t\right)=f(-t+2)=-f(-t+4)\),且令\(t=0\),则\(f(0)=f(2)=f(4)=0\).
\(f(-t+2)=-f(-t+4)=-(-f(-t+6))=f(-t+6)\)
\(m=-t+2\),则\(f(m)=f(m+4)\)
\(f\left(x\right)\)周期为\(4\).
\(f\left(2024\right)=f(0)=0\).

\(f\left(\dfrac{7}{2}\right)=f\left(-\dfrac{1}{2}\right)=-f\left(\dfrac{3}{2}\right)\)\(f\left(1\right)\),都不确定是否为\(0\)
故选:\(B\).
 

五 巩固练习

  1. 已知函数\(f\left(2x-1\right)\)的定义域为\(\left(-1,9\right)\),则函数\(f\left(3x+1\right)\)的定义域为( )
    A.\(\left(-\dfrac{1}{3},\dfrac{4}{3}\right)\) \(\qquad \qquad\)B.\(\left(-\dfrac{4}{3},\dfrac{16}{3}\right)\) \(\qquad \qquad\) C.\(\left(-\dfrac{2}{3},\dfrac{8}{3}\right)\) \(\qquad \qquad\)D.\(\left(-2,28\right)\)

  2. 已知函数\(f\left(x\right)\)对任意的\(x\in R\)都有\(f\left(x+8\right)=-f\left(x\right)\),若\(y=f\left(x+2\right)\)的图象关于点\(\left(-2,0\right)\)对称,且\(f\left(3\right)=3\),则\(f\left(43\right)=\)( )
    A.\(0\) \(\qquad \qquad \qquad\) B.\(-3\) \(\qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad\) D.\(4\)

  3. 已知函数\(y=f\left(2x-1\right)\)的图象关于点\(\left(-1,1\right)\)对称,则下列函数是奇函数的是( )
    A.\(y=f\left(2x-2\right)+1\) \(\qquad \qquad \qquad \qquad\) B.\(y=f\left(2x-3\right)+1\)
    C.\(y=f\left(2x-2\right)-1\) \(\qquad \qquad \qquad \qquad\) D.\(y=f\left(2x-3\right)-1\)

  4. 已知\(f\left(x-1\right)\)是定义域为\(R\)的奇函数,\(g\left(x\right)=f\left(2x+3\right)\)是定义域为\(R\)的偶函数,则( )
    A.\(g\left(2\right)=0\) \(\qquad \qquad\)B.\(g\left(3\right)=0\) \(\qquad \qquad\) C.\(f\left(3\right)=0\) \(\qquad \qquad\)D.\(f\left(5\right)=0\)

  5. (多选)已知函数\(f(x)\)的定义域为\(\mathrm{R}\)\(f(x+1)\)为奇函数,\(f(x+2)\)为偶函数,且\(x\in[0,1]\)时,\(f(x)\)单调递增,则下列结论正确的为( )
    A.\(f(x)\)是偶函数 \(\qquad \qquad \qquad \qquad\) B.\(f(x)\)的图象关于点\((-1,0)\)中心对称
    C.\(f(2024)=0\) \(\qquad \qquad \qquad \qquad\) D.\(f\left(\dfrac{5}{4}\right)+f\left(-\dfrac{1}{4}\right)<0\)

参考答案

  1. 【详解】函数\(f\left(2x-1\right)\)的定义域为\(\left(-1,9\right)\)
    \(\stackrel {向左平移\frac{1}{2}个单位}{\Longrightarrow}\)函数\(f\left(2x\right)\)的定义域为\(\left(-\dfrac{3}{2},\dfrac{17}{2}\right)\)
    \(\stackrel {横坐标缩小到原来的\frac{2}{3}倍}{\Longrightarrow}\)函数\(f\left(3x\right)\)的定义域为\(\left(-1,\dfrac{17}{3}\right)\)
    \(\stackrel {向左平移\frac{1}{3}个单位}{\Longrightarrow}\)函数\(f\left(3x+1\right)\)的定义域为\(\left(-\dfrac{4}{3},\dfrac{16}{3}\right)\).
    故选:\(B\).
  2. 【详解】由于\(y=f\left(x+2\right)\)的图象关于点\((-2,0)\)对称,
    \(y=f\left(x\right)\)的图象关于点\((0,0)\)对称,即\(y=f\left(x\right)\)为奇函数,
    \(f\left(x+8\right)=-f\left(x\right)\)
    \(f\left(x+16\right)=-f\left(x+8\right)=f\left(x\right)\),即\(16\)\(f\left(x\right)\)的周期,
    \(x=-3\)代入\(f\left(x+8\right)=-f\left(x\right)\),则\(f\left(5\right)=-f\left(-3\right)=f\left(3\right)=3\)
    \(f\left(43\right)=f\left(43-3\times16\right)=f\left(-5\right)=-f\left(5\right)=-3\)
    故选:\(B\)
  3. 【详解】函数\(y=f\left(2x-1\right)\)的图象关于点\(\left(-1,1\right)\)对称,
    所以函数\(y=f\left(2x-1\right)\)的图象向右平移\(1\)个单位,
    向下平移一个单位后函数的图象关于点\(\left(0,0\right)\)对称,
    即可得\(y=f\left[2\left(x-1\right)-1\right]-1=f\left(2x-3\right)-1\).
    故选:\(D\)
  4. 【详解】因为\(f\left(x-1\right)\)是定义域为\(R\)的奇函数,
    所以函数\(f\left(x\right)\)关于点\(\left(-1,0\right)\)对称,且\(f\left(-1\right)=0\)
    因为\(g\left(x\right)=f\left(2x+3\right)\)是定义域为\(R\)的偶函数,
    所以函数\(f\left(x\right)\)关于直线\(x=3\)对称,
    所以\(f\left(7\right)=0\),即\(g\left(2\right)=0\).
    故选:\(A\)
  5. 【详解】因为\(f(x+1)\)为奇函数,所以\(f(x)\)关于\((1,0)\)对称 ①,
    因为\(f(x+2)\)为偶函数,所以\(f(x)\)关于\(x=2\)对称 ②,
    \(x\in[0,1]\)时,\(f(x)\)单调递增,
    假设当\(0\le x\le1\)时,\(y=x-1\)
    反复使用以上①②两点,
    结合图象可得函数周期为\(T=4\)\(f(x)\)是偶函数,\(f(x)\)的图象关于点\((-1,0)\)中心对称,\(f(2024)=f(0)\)不一定为\(0\).

    \(AB\)正确,\(C\)错误;
    因为\(f\left(\dfrac{5}{4}\right)+f\left(-\dfrac{1}{4}\right)=f\left(2-\dfrac{3}{4}\right)+f\left(\dfrac{1}{4}\right)\)\(=-f\left(-\dfrac{3}{4}\right)+f\left(\dfrac{1}{4}\right)=f\left(\dfrac{1}{4}\right)-f\left(\dfrac{3}{4}\right)\)
    \(x\in[0,1]\)时,\(f(x)\)单调递增,
    所以\(f\left(\dfrac{1}{4}\right)<f\left(\dfrac{3}{4}\right)\),即\(f\left(\dfrac{1}{4}\right)-f\left(\dfrac{3}{4}\right)<0\)
    \(D\)正确.
    故选:\(ABD\).
posted @ 2024-10-10 09:49  贵哥讲数学  阅读(274)  评论(0)    收藏  举报
//更改网页ico // 实现数学符号与汉字间有间隙 //文章页加大页面,隐藏侧边栏