机器学习之垃圾邮件分类2
1.读取
# 读取数据集
def read_dataset():
file_path =r'C:\Users\Administrator\PycharmProjects\机器学习\data\SMSSpamCollection.csv'
sms = open(file_path, encoding='utf-8')#读取数据
sms_label = [] # 存储标题
sms_data = []#存储数据
csv_reader = csv.reader(sms, delimiter='\t')
for line in csv_reader:
sms_label.append(line[0]) # 提取出标签
sms_data.append(preprocessing(line[1])) # 对每封邮件做预处理
sms.close()
return sms_data, sms_label
2.数据预处理
# 预处理
def preprocessing(text):
tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 分词
stops = stopwords.words('english') # 使用英文的停用词表
tokens = [token for token in tokens if token not in stops] # 停用词
tokens = [token.lower() for token in tokens if len(token) >= 3] # 大小写,短词
lmtzr = WordNetLemmatizer()
tag = nltk.pos_tag(tokens) # 词性
tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)] # 词性还原
preprocessed_text = ' '.join(tokens)
return preprocessed_text
3.数据划分—训练集和测试集数据划分
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)
4.文本特征提取
sklearn.feature_extraction.text.CountVectorizer
sklearn.feature_extraction.text.TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf2 = TfidfVectorizer()
观察邮件与向量的关系
向量还原为邮件
# 向量还原邮件
def revert_mail(x_train, X_train, model):
s = X_train.toarray()[0]
print("第一封邮件向量表示为:", s)
# 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
a = np.flatnonzero(X_train.toarray()[0]) # 非零元素的位置(index)
print("非零元素的位置:", a)
print("向量的非零元素的值:", s[a])
b = model.vocabulary_ # 词汇表
key_list = []
for key, value in b.items():
if value in a:
key_list.append(key) # key非0元素对应的单词
print("向量非零元素对应的单词:", key_list)
print("向量化之前的邮件:", x_train[0])
运行结果如下:

4.模型选择
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
说明为什么选择这个模型?
# 模型选择(根据数据特点选择多项式分布)
def mnb_model(x_train, x_test, y_train, y_test):
mnb = MultinomialNB()
mnb.fit(x_train, y_train)
ypre_mnb = mnb.predict(x_test)
print("总数:", len(y_test))
print("预测正确数:", (ypre_mnb == y_test).sum())
return ypre_mnb
运行结果如下:

模型需要根据数据集中特征的特点来进行选取,垃圾邮件分类重点在于文档中单词出现的频率以及文档的重要性,不符合正态分布的特征。应选择多项式分布模型。比如鸢尾花数据等,其中判定是否为鸢尾花需要通过4种特征判断,并且这4种特征大小分布范围呈正态分布形状,因此鸢尾花的判断可以采用高斯型分布较为合适。
5.模型评价:混淆矩阵,分类报告
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_predict)
说明混淆矩阵的含义
TP(True Positive):真实为0,预测也为0
FN(False Negative):真实为0,预测为1
FP(False Positive):真实为1,预测为0
TN(True Negative):真实为1,预测也为1
from sklearn.metrics import classification_report
说明准确率、精确率、召回率、F值分别代表的意义
准确率:被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。(TP+TN)/总
精确率:表示被分为正例的示例中实际为正例的比例。 TP/(TP+FP)
召回率 :召回率是覆盖面的度量,度量有多个正例被分为正例。TP/(TP+FN)
F值 : 精确率 * 召回率 * 2 / ( 精确率 + 召回率) 。F值就是准确率(P)和召回率(R)的加权调和平均。
整体实现代码如下:
# -*- coding:utf-8 -*-
# 开发人员:爱飞的大白鲨
# 开发时间:2020/5/24 15:43
# 文件名称:垃圾邮件分类3.py
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix, classification_report
import numpy as np
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import csv
def get_wordnet_pos(treebank_tag):# 根据词性,生成还原参数pos
if treebank_tag.startswith('J'): # adj
return nltk.corpus.wordnet.ADJ
elif treebank_tag.startswith('V'): # v
return nltk.corpus.wordnet.VERB
elif treebank_tag.startswith('N'): # n
return nltk.corpus.wordnet.NOUN
elif treebank_tag.startswith('R'): # adv
return nltk.corpus.wordnet.ADV
else:
return nltk.corpus.wordnet.NOUN
# 预处理
def preprocessing(text):
tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 分词
stops = stopwords.words('english') # 使用英文的停用词表
tokens = [token for token in tokens if token not in stops] # 停用词
tokens = [token.lower() for token in tokens if len(token) >= 3] # 大小写,短词
lmtzr = WordNetLemmatizer()
tag = nltk.pos_tag(tokens) # 词性
tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)] # 词性还原
preprocessed_text = ' '.join(tokens)
return preprocessed_text
# 读取数据集
def read_dataset():
file_path =r'C:\Users\Administrator\PycharmProjects\机器学习\data\SMSSpamCollection.csv'
sms = open(file_path, encoding='utf-8')#读取数据
sms_label = [] # 存储标题
sms_data = []#存储数据
csv_reader = csv.reader(sms, delimiter='\t')
for line in csv_reader:
sms_label.append(line[0]) # 提取出标签
sms_data.append(preprocessing(line[1])) # 对每封邮件做预处理
sms.close()
return sms_data, sms_label
# 划分数据集
def split_dataset(data, label):
x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
return x_train, x_test, y_train, y_test
# 把原始文本转化为tf-idf的特征矩阵
def tfidf_dataset(x_train,x_test):
tfidf = TfidfVectorizer()
X_train = tfidf.fit_transform(x_train) # X_train用fit_transform生成词汇表
X_test = tfidf.transform(x_test) # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
return X_train, X_test, tfidf
# 向量还原邮件
def revert_mail(x_train, X_train, model):
s = X_train.toarray()[0]
print("第一封邮件向量表示为:", s)
# 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
a = np.flatnonzero(X_train.toarray()[0]) # 非零元素的位置(index)
print("非零元素的位置:", a)
print("向量的非零元素的值:", s[a])
b = model.vocabulary_ # 词汇表
key_list = []
for key, value in b.items():
if value in a:
key_list.append(key) # key非0元素对应的单词
print("向量非零元素对应的单词:", key_list)
print("向量化之前的邮件:", x_train[0])
# 模型选择(根据数据特点选择多项式分布)
def mnb_model(x_train, x_test, y_train, y_test):
mnb = MultinomialNB()
mnb.fit(x_train, y_train)
ypre_mnb = mnb.predict(x_test)
print("总数:", len(y_test))
print("预测正确数:", (ypre_mnb == y_test).sum())
return ypre_mnb
# 模型评价:混淆矩阵,分类报告
def class_report(ypre_mnb, y_test):
conf_matrix = confusion_matrix(y_test, ypre_mnb)
print("混淆矩阵:\n", conf_matrix)
c = classification_report(y_test, ypre_mnb)
print("------------------------------------------")
print("分类报告:\n", c)
print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))
if __name__ == '__main__':
sms_data, sms_label = read_dataset() # 读取数据集
x_train, x_test, y_train, y_test = split_dataset(sms_data, sms_label) # 划分数据集
X_train, X_test,tfidf = tfidf_dataset(x_train, x_test) # 把原始文本转化为tf-idf的特征矩阵
revert_mail(x_train, X_train, tfidf) # 向量还原成邮件
y_mnb = mnb_model(X_train, X_test, y_train,y_test) # 模型选择
class_report(y_mnb, y_test) # 模型评价
运行结果如下:

6.比较与总结
如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?
TfidfVectorizer:①除了考量某词汇在本文本出现的频率,还关注包含这个词汇的其他文本的数量;②能够削减高频没有意义的词汇出现带来的影响,挖掘更有意义的特征。
可以看出,在训练文本的数据越多,选择TfidfVectorizer这种特征量化方式更有优势,而且TfidfVectorizer可以削减高频没有意义的词汇,可以将有意义的词汇保留下来。

浙公网安备 33010602011771号