L2G2-Lagent 自定义你的 Agent 智能体

L2G2-Lagent 自定义你的 Agent 智能体

1. Agent 入门

1.1 Agent 是什么

Agent 的核心是将感知,推理和行动结合成一个闭环。Agent 通过感知器感知外部的环境,获取输入的数据。然后输入数据到某种形式中(比如模型),它负责处理输入数据,制定行动策略。随后执行器根据模型的输出执行操作,比如控制机器人的移动,调用工具完成特定任务。

Agent 有四个基本特性:

  1. 自主性:能够独立完成决策;
  2. 交互性:与外界环境实时交换信息。
  3. 适应性:根据环境变化调整自身行为。
  4. 目的性:最重要的特性,Agent 的所有行为都以实现特定目标为导向。

右下角是 Agent 的经典工作组件图:

  • 记忆存储:记录历史信息,为未来的决策提供支持。
  • 规划模块:回答如何解决问题,以及调用哪些工具。
  • 工具集:可以使用的工具的集合,由规划模块需要根据任务选择合适的工具。
  • 行动模块:完成最终的操作,形成闭环反馈。

agent 基础介绍

【大模型研讨课第六期(共 10 期):推理 2】 【精准空降到 43:38】

1.2 LLM 智能体框架——以 Lagent 为例

Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。

Lagent 目前已经支持了包括 AutoGPT、ReAct 等在内的多个经典智能体范式。

其基本结构如下所示:

  • LLM:大语言模型,中心模块,负责推理规划和生成响应。
  • Action Executor:行动执行器,负责支持调用多种外部的工具。比如在 Lagent 中集成了以下工具:
    • Arxiv 搜索
    • Bing 地图
    • Google 学术搜索
    • Google 搜索
    • 交互式 IPython 解释器
    • IPython 解释器
    • PPT
    • Python 解释器
    • 等等
  • Plan and Action:支持多种推理模式。

Lagent 框架介绍

LLM智能体典型框架如下图所示:

image-20250223161111566

1.3 常见工具调用能力范式(智能体范式)

1.3.1 通用智能体范式

这种范式强调模型无需依赖特定的特殊标记(special token)来定义工具调用的参数边界。模型依靠其强大的指令跟随与推理能力,在指定的system prompt框架下,根据任务需求自动生成响应。这种方式让模型在推理过程中能更灵活地适应多种任务,不需要对 Tokenizer 进行特殊设计。

优势

  • 灵活适应不同任务,无需设计和维护复杂的标记系统。
  • 适合快速迭代,降低微调和部署的复杂性。
  • 更易与多模态输入(如文本和图像)结合,扩展模型的通用性。

劣势

  • 由于没有明确标记,调用工具时的错误难以捕捉和纠正。
  • 在复杂任务中,模型生成可能不够精准,导致工具调用的准确性下降。

典型例子1:ReAct

将模型的推理分为ReasonAction两个步骤,并让它们交替执行,直到得到最终结果:

  • Reason:生成分析步骤,解释当前任务的上下文或状态,帮助模型理解下一步行动的逻辑依据。
  • Action:基于 Reason 的结果,生成具体的工具调用请求(如查询搜索引擎、调用 API、数据库检索等),将模型的推理转化为行动。

image-20250223153448949

典型例子2:ReWoo

全称为Reason without Observation,是在 ReAct 范式基础上进行改进的 Agent 架构,针对多工具调用的复杂性与冗余性提供了一种高效的解决方案。相比于 ReAct 中的交替推理和行动,ReWoo直接生成一次性使用的完整工具链,减少了不必要的 Token 消耗和执行时间。同时,由于工具调用的规划与执行解耦,这一范式在模型微调时不需要实际调用工具即可完成。

  • Planner:用户输入的问题或任务首先传递给 Planner,Planner 将其分解为多个逻辑上相关的计划。每个计划包含推理部分(Reason)以及工具调用和参数(Execution)。Task List 按顺序列出所有需要执行的任务链。
  • Worker:每个 Worker 根据 Task List 中的子任务,调用指定工具并返回结果。所有 Worker 之间通过共享状态保持任务执行的连续性。
  • Solver阶段:Worker 完成任务后,将所有结果同步到 Solver。Solver 会对这些结果进行整合,并生成最终的答案或解决方案返回给用户。

1.3.2 模型特化智能体范式

模型特化智能体范式强调在模型的工具调用过程中,使用特定的特殊标记(special tokens )来明确调用的起止点。这些标记通常与模型的 Tokenizer 深度集成,确保在执行特定任务时,能够准确识别并执行相应的工具调用。

优势

  • 特定标记明确工具调用的起止点,提高了调用的准确性。
  • 有助于模型在部署过程中避免误调用,增强系统的可控性。
  • 提高对复杂调用链的支持,适合复杂任务的场景。

劣势

  • 需要对 Tokenizer 和模型架构进行定制,增加开发和维护成本。
  • 调用流程固定,降低了模型的灵活性,难以适应快速变化的任务。

典型例子:IntermLM2

工具调用使用了如 <|plugin|><|interpreter|><|action_start|><|action_end|> 等特殊标记,确保每个调用都符合指定的格式。模型在执行任务时,依靠这些标记与系统紧密协作,保障任务的精准执行。文档链接:InternLM-Chat Agent

1.3.3 两种范式的对比

两种 agent 范式区别_看图王

1.4 Lagent 框架中 Agent 的使用

工具调用流程:

  1. 用户输入JSON或者字典形式的参数,通过Action Executor传递给工具。
  2. Action Executor动态地触发工具并返回结果。
  3. 结果以标准形式输出,供Agent使用。

Lagent中agent的使用

在Lagent中,动作也被成为工具,即下图中的Action Executor模块。

image-20250223161710417

2. 实战1:让大模型学会搜文献

2.1 功能概览

大模型搜论文

2.2 代码实现

创建一个代码example,创建agent_api_web_demo.py,在里面实现我们的Web Demo:

conda activate lagent
cd /root/agent_camp4/lagent/examples
touch agent_api_web_demo.py

Action,也称为工具,Lagent中集成了很多好用的工具,提供了一套LLM驱动的智能体用来与真实世界交互并执行复杂任务的函数,包括谷歌文献检索、Arxiv文献检索、Python编译器等。具体可以查看文档

让我们来体验一下,让LLM调用Arxiv文献检索这个工具:

agent_api_web_demo.py中写入下面的代码,这里利用 GPTAPI 类,该类继承自 BaseAPILLM,封装了对 API 的调用逻辑,然后利用Streamlit启动Web服务:

import copy
import os
from typing import List
import streamlit as st
from lagent.actions import ArxivSearch
from lagent.prompts.parsers import PluginParser
from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
from lagent.llms import GPTAPI

class SessionState:
    """管理会话状态的类。"""

    def init_state(self):
        """初始化会话状态变量。"""
        st.session_state['assistant'] = []  # 助手消息历史
        st.session_state['user'] = []  # 用户消息历史
        # 初始化插件列表
        action_list = [
            ArxivSearch(),
        ]
        st.session_state['plugin_map'] = {action.name: action for action in action_list}
        st.session_state['model_map'] = {}  # 存储模型实例
        st.session_state['model_selected'] = None  # 当前选定模型
        st.session_state['plugin_actions'] = set()  # 当前激活插件
        st.session_state['history'] = []  # 聊天历史
        st.session_state['api_base'] = None  # 初始化API base地址

    def clear_state(self):
        """清除当前会话状态。"""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None


class StreamlitUI:
    """管理 Streamlit 界面的类。"""

    def __init__(self, session_state: SessionState):
        self.session_state = session_state
        self.plugin_action = []  # 当前选定的插件
        # 初始化提示词
        self.meta_prompt = META_CN
        self.plugin_prompt = PLUGIN_CN
        self.init_streamlit()

    def init_streamlit(self):
        """初始化 Streamlit 的 UI 设置。"""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    def setup_sidebar(self):
        """设置侧边栏,选择模型和插件。"""
        # 模型名称和 API Base 输入框
        model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
        
        # ================================== 硅基流动的API ==================================
        # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
        # api_base = st.sidebar.text_input(
        #     'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
        # )
        # ================================== 浦语官方的API ==================================
        api_base = st.sidebar.text_input(
            'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
        )
        # ==================================================================================
        # 插件选择
        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[],
        )

        # 根据选择的插件生成插件操作列表
        self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]

        # 动态生成插件提示
        if self.plugin_action:
            self.plugin_prompt = get_plugin_prompt(self.plugin_action)

        # 清空对话按钮
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()

        return model_name, api_base, self.plugin_action

    def initialize_chatbot(self, model_name, api_base, plugin_action):
        """初始化 GPTAPI 实例作为 chatbot。"""
        token = os.getenv("token")
        if not token:
            st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
            st.stop()  # 停止运行应用
            
        # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
        meta_prompt = [
            {"role": "system", "content": self.meta_prompt, "api_role": "system"},
            {"role": "user", "content": "", "api_role": "user"},
            {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
            {"role": "environment", "content": "", "api_role": "environment"}
        ]

        api_model = GPTAPI(
            model_type=model_name,
            api_base=api_base,
            key=token,  # 从环境变量中获取授权令牌
            meta_template=meta_prompt,
            max_new_tokens=512,
            temperature=0.8,
            top_p=0.9
        )
        return api_model

    def render_user(self, prompt: str):
        """渲染用户输入内容。"""
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        """渲染助手响应内容。"""
        with st.chat_message('assistant'):
            content = getattr(agent_return, "content", str(agent_return))
            st.markdown(content if isinstance(content, str) else str(content))


def main():
    """主函数,运行 Streamlit 应用。"""
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)
    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png'
        )
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')

    # 设置侧边栏并获取模型和插件信息
    model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
    plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]

    if (
        'chatbot' not in st.session_state or
        model_name != st.session_state['chatbot'].model_type or
        'last_plugin_action' not in st.session_state or
        plugin_action != st.session_state['last_plugin_action'] or
        api_base != st.session_state['api_base']    
    ):
        # 更新 Chatbot
        st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
        st.session_state['last_plugin_action'] = plugin_action  # 更新插件状态
        st.session_state['api_base'] = api_base  # 更新 API Base 地址

        # 初始化 AgentForInternLM
        st.session_state['agent'] = AgentForInternLM(
            llm=st.session_state['chatbot'],
            plugins=plugins,
            output_format=dict(
                type=PluginParser,
                template=PLUGIN_CN,
                prompt=get_plugin_prompt(plugin_action)
            )
        )
        # 清空对话历史
        st.session_state['session_history'] = []

    if 'agent' not in st.session_state:
        st.session_state['agent'] = None

    agent = st.session_state['agent']
    for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)

    # 处理用户输入
    if user_input := st.chat_input(''):
        st.session_state['ui'].render_user(user_input)

        # 调用模型时确保侧边栏的系统提示词和插件提示词生效
        res = agent(user_input, session_id=0)
        st.session_state['ui'].render_assistant(res)

        # 更新会话状态
        st.session_state['user'].append(user_input)
        st.session_state['assistant'].append(copy.deepcopy(res))

    st.session_state['last_status'] = None


if __name__ == '__main__':
    main()

在终端中记得先将获取的API密钥写入环境变量,然后再输入启动命令:

export token='your_token_here' # 也可以在.bashrc中写入,然后source执行
streamlit run agent_api_web_demo.py

启动成功:

image-20250223180154803

接下来在vscode的终端中做端口映射,streamlit默认是8501端口:

image-20250223180243985

然后直接点击终端中的Local URL即可在本地浏览器打开网页:

页面的侧边栏有三个内容,分别是模型名称、API Base地址和插件选择,其中如果采用浦语的API,模型名称可以选择internlm2.5-latest,默认指向最新发布的 InternLM2.5 系列模型,

备注: 如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat

image-20250223180452671

未开启ArxivSearch插件时,让模型“帮我搜索最新的Multilingual clip Embedding模型”。

得到结果如下:它会给出截止最后的更新日期(2023年4月)的论文,但本文写作时间已经是2025年2月23日了。

image-20250223180647869

开启ArxivSearch插件,再次提问:

image-20250223180952303

得到了最新的论文。

image-20250223181018322

3. 实战2:自定义大模型天气助手

3.1 功能概览

天气助手

3.2 代码实现

在完成了上面的内容后,可能就会同学好奇了,那么我应该如何基于Lagent框架实现一个自己的工具,赋予LLM额外的能力? 本节将会以实时天气查询为例子,通过调用和风天气API,介绍如何自定义一个自己的Agent。

Lagent 框架的工具部分文档可以在此处查看:Lagent 工具文档

使用 Lagent 自定义工具主要分为以下3步:

(1)继承 BaseAction

(2)实现简单工具的 run 方法;或者实现工具包内每个子工具的功能

(3)简单工具的 run 方法可选被 tool_api 装饰;工具包内每个子工具的功能都需要被 tool_api 装饰

首先,为了使用和风天气的 API 服务,你需要获取一个 API Key。请按以下步骤操作:

(1)访问 和风天气 API 文档(需要注册账号)。

(2)点击页面右上角的“控制台”。

(3)在控制台中,点击左侧的“项目管理”,然后点击右上角“创建项目”。

image-20250223181350483

(4)输入项目名称(可以使用“Lagent”),选择免费订阅,并在凭据设置中创建新的凭据。

(5)创建后,回到“项目管理”页面,找到你的 API Key 并复制保存。

image-20250223181520762

~/.bashrcexport weather_token="your api key",并source ~/.bashrc执行。

[!caution]

export语句是shell语法,在等号两边不能加空格。

export weather_token="you_api_key"

接着,我们需要在laegnt/actions文件夹下面创建一个天气查询的工具程序。

conda activate lagent
cd /root/agent_camp4/lagent/lagent/actions
touch weather_query.py

贴入如下python代码:

import os
import requests
from lagent.actions.base_action import BaseAction, tool_api
from lagent.schema import ActionReturn, ActionStatusCode

class WeatherQuery(BaseAction):
    def __init__(self):
        super().__init__()
        self.api_key = os.getenv("weather_token")
        print(self.api_key)
        if not self.api_key:
            raise EnvironmentError("未找到环境变量 'token'。请设置你的和风天气 API Key 到 'weather_token' 环境变量中,比如export weather_token='xxx' ")

    @tool_api
    def run(self, location: str) -> dict:
        """
        查询实时天气信息。

        Args:
            location (str): 要查询的地点名称、LocationID 或经纬度坐标(如 "101010100" 或 "116.41,39.92")。

        Returns:
            dict: 包含天气信息的字典
                * location: 地点名称
                * weather: 天气状况
                * temperature: 当前温度
                * wind_direction: 风向
                * wind_speed: 风速(公里/小时)
                * humidity: 相对湿度(%)
                * report_time: 数据报告时间
        """
        try:
            # 如果 location 不是坐标格式(例如 "116.41,39.92"),则调用 GeoAPI 获取 LocationID
            if not ("," in location and location.replace(",", "").replace(".", "").isdigit()):
                # 使用 GeoAPI 获取 LocationID
                geo_url = f"https://geoapi.qweather.com/v2/city/lookup?location={location}&key={self.api_key}"
                geo_response = requests.get(geo_url)
                geo_data = geo_response.json()

                if geo_data.get("code") != "200" or not geo_data.get("location"):
                    raise Exception(f"GeoAPI 返回错误码:{geo_data.get('code')} 或未找到位置")

                location = geo_data["location"][0]["id"]

            # 构建天气查询的 API 请求 URL
            weather_url = f"https://devapi.qweather.com/v7/weather/now?location={location}&key={self.api_key}"
            response = requests.get(weather_url)
            data = response.json()

            # 检查 API 响应码
            if data.get("code") != "200":
                raise Exception(f"Weather API 返回错误码:{data.get('code')}")

            # 解析和组织天气信息
            weather_info = {
                "location": location,
                "weather": data["now"]["text"],
                "temperature": data["now"]["temp"] + "°C", 
                "wind_direction": data["now"]["windDir"],
                "wind_speed": data["now"]["windSpeed"] + " km/h",  
                "humidity": data["now"]["humidity"] + "%",
                "report_time": data["updateTime"]
            }

            return {"result": weather_info}

        except Exception as exc:
            return ActionReturn(
                errmsg=f"WeatherQuery 异常:{exc}",
                state=ActionStatusCode.HTTP_ERROR
            )

其中,WeatherQuery 类继承自 BaseAction,这是 Lagent 的基础工具类,提供了工具的框架逻辑。tool_api 是一个装饰器,用于标记工具中具体执行逻辑的函数,使得 Lagent 智能体能够调用该方法执行任务。run 方法是工具的主要逻辑入口,通常会根据输入参数完成一项任务并返回结果。

在具体函数实现上,利用GeoAPI 获取 LocationID,当用户输入的 location 不是经纬度坐标格式(如 116.41,39.92),则使用和风天气的 GeoAPI 将位置名转换为 LocationID,并通过 Weather API 获取目标位置的实时天气数据。最后,解析返回的 JSON 数据,并格式化为结构化字典:

/root/agent_camp4/lagent/lagent/actions/__init__.py中加入下面的代码,用以初始化WeatherQuery方法:

from .weather_query import WeatherQuery # 新增这行
__all__ = [
    'BaseAction', 'ActionExecutor', 'AsyncActionExecutor', 'InvalidAction',
    'FinishAction', 'NoAction', 'BINGMap', 'AsyncBINGMap', 'ArxivSearch',
    'AsyncArxivSearch', 'GoogleSearch', 'AsyncGoogleSearch', 'GoogleScholar',
    'AsyncGoogleScholar', 'IPythonInterpreter', 'AsyncIPythonInterpreter',
    'IPythonInteractive', 'AsyncIPythonInteractive',
    'IPythonInteractiveManager', 'PythonInterpreter', 'AsyncPythonInterpreter',
    'PPT', 'AsyncPPT', 'WebBrowser', 'AsyncWebBrowser', 'BaseParser',
    'JsonParser', 'TupleParser', 'tool_api', 'WeatherQuery' # 新增这里
]

接下来,我们将修改 2.2小节中的Web Demo 脚本来集成自定义的 WeatherQuery 插件。

打开agent_api_web_demo.py, 修改内容如下,目的是将该工具注册进大模型的插件列表中,使得其可以知道。

- from lagent.actions import ArxivSearch
+ from lagent.actions import ArxivSearch, WeatherQuery
- # 初始化插件列表
-        action_list = [
-            ArxivSearch(),
-       ]
+        action_list = [
+            ArxivSearch(),
+            WeatherQuery(),
+       ]

再次启动Web程序,streamlit run agent_api_web_demo.py

可以看到左侧的插件栏多了天气查询插件,我们首先输入命令“帮我查询一下厦门现在的天气”,可以看到模型无法知道现在的实时天气情况。

image-20250223183701688

现在,我们将2个插件同时勾选上,用以说明模型具备识别调用不同工具的能力,什么任务对应什么工具来解决。

这次我们查询一下厦门(随便什么城市都行的☀️)的天气,输入命令“帮我查询一下厦门现在的天气”。 现在,大模型通过天气查询的API准确地完成了这个任务:

image-20250223183758732

如果我们再次询问,让其搜索文献,可以看到,模型具备了根据任务情况调用不同工具的能力。

image-20250223184003674

4. 实战3:Multi-Agents博客写作系统的搭建

4.1 功能概览

博客agent

4.2 代码实现

在这一节中,我们将使用 Lagent 来构建一个多智能体系统 (Multi-Agent System),展示如何协调不同的智能代理完成内容生成和优化的任务。我们的多智能体系统由两个主要代理组成:

(1)内容生成代理(作家):负责根据用户的主题提示生成一篇结构化、专业的文章或报告。

(2)批评优化代理(评论家):负责审阅生成的内容,指出不足,推荐合适的文献,使文章更加完善。

Multi-Agents博客写作系统的流程图如下:

mulit-agent

首先,创建一个新的 Python 文件 multi_agents_api_web_demo.py,并进入 lagent 环境:

conda activate lagent
cd /root/agent_camp4/lagent/examples
touch multi_agents_api_web_demo.py

将下面的代码填入multi_agents_api_web_demo.py:

运行streamlit run multi_agents_api_web_demo.py,启动Web服务 输入话题,比如Multilingual clip Embedding model

可以看到,Multi-Agents博客写作系统正在按照下面的3步骤,生成、批评和完善内容。

Step 1:写作者根据用户输入生成初稿。

image-20250223184953518

Step 2:批评者对初稿进行评估,提供改进建议和文献推荐(通过关键词触发 Arxiv 文献搜索)。

image-20250223185003103

Step 3:写作者根据批评意见对内容进行改进。

可以看到,我们的agent还是有很大不足,并未没有找到合适的论文来修改。

image-20250223185100664

5. Huggingface Spaces 部署Agent

小伙伴们可能在将 agent 的代码部署到 Huggingface Spaces 时遇到了一些困难,比如我不想让别人看到我的 api_key 但我又不知道环境变量怎么设?agent 的 demo 里引用了别的代码的内容,有没有比较方便的办法保留原本的文档结构,直接把天气和博客两个代码一锅端一块儿提交?接下来将手把手教大家解决上面两个痛点。

5.1 Spaces本地设置环境变量

首先创建一个新的Spaces,SDK 选择 Streamlit,点击 Create Spaces

img

然后就会跳转到如下页面,点击右上角 Settings

img

然后往下翻,找到 Variables and secrets,找到右上角创建 New secret

img

这里我们输入两个 api_key,一个是 token ——你的浦语/硅基流动 api,一个是 weather_token ——你的和风天气 api,要注意名称不要写错。

img

然后点击 Save 就保存好你的密钥了。

img

Secrets 和 Variables的区别:

官方说法:

image-20250225155746025

实际上:两者都可以通过os.getenv("api_key_name")访问到。但只要你不傻傻地自己写代码暴露 api 别人是没办法获取你写在 Huggingface Spaces 环境变量中的 api_token 的。

5.2 修改原来的代码,使其符合hugging face要求

[!note]

这里只记录了要点,具体的步骤看教程

hugging face要求:

  1. 在初始化时需要提供 python 环境的清单,文件名为requirements.txt。提供了这个清单之后,hugging face可以自动下载所需要的依赖。

  2. huggingfaces 上的 docker 找不到 嵌套的依赖文件

    -r requirements/optional.txt # 找不到
    -r requirements/runtime.txt # 找不到
    

    img

    我们将其手动添加至 requirements.txt 中,即所有依赖都添加到这个文件中。

  3. Huggingface Spaces 要求 file 中必须有一个名称为 app.py 的文件作为项目的入口启动文件,否则会出现 No application file 错误。一般可以将 app.py 的入口文件当作 HomePage,编写一个多页面的 streamlit 首页实现对天气查询小助手和博客写作小助手两个 agent 的导航。

    示例代码如下(我们这里采用代码写入环境变量的方式,这样子别人来访问的时候可以不用消耗你自己的 api_token,而是让他们自己填写)

    import streamlit as st
    import os
    import runpy
    st.set_page_config(layout="wide", page_title="My Multi-Page App")
    def set_env_variable(key, value):
        os.environ[key] = value
    def home_page():
        st.header("欢迎来到首页")
        # 设置输入框为隐私状态
        token = st.text_input("请输入浦语token:", type="password", key="token")
        weather_token = st.text_input("请输入和风天气token:", type="password", key="weather_token")
        if st.button("保存并体验agent"):
            if token and weather_token:
                set_env_variable("token", token)  # 设置环境变量为 'token'
                set_env_variable("weather_token", weather_token)  # 设置环境变量为 'weather_token'
                st.session_state.token_entered = True
                st.rerun()
            else:
                st.error("请输入所有token")
    if 'token_entered' not in st.session_state:
        st.session_state.token_entered = False
    if not st.session_state.token_entered:
        home_page()
    else:
        # 动态加载子页面
        page = st.sidebar.radio("选择页面", ["天气查询助手", "博客写作助手"])
        if page == "天气查询助手":
            runpy.run_path("examples/agent_api_web_demo.py", run_name="__main__")
        elif page == "博客写作助手":
            runpy.run_path("examples/multi_agents_api_web_demo.py", run_name="__main__")
    

    此外由于 streamlit 要求一个页面内只能有一个 st.set_page_config() 函数,因此需要把其他文件中的相应代码注释掉,不然会报错。

  4. huggingface space项目的readme文件必须有项目的设置:

    官方文档

    image-20250225161318779

遇到的问题

  1. 开发机无法直接连接到hugging face,用官方提供的git链接无法克隆仓库到开发机中。

    解决方法:使用hfmirror克隆

    git clone https://hf-mirror.com/spaces/{your_huggingface_name}/{your_space_name}
    
  2. 我们克隆space的文件到开发机后,需要将agent_camp4/lagent中的文件拷贝到本地仓库中。但是需要注意原来的lagent文件夹中也有.git目录和readme文件,由于 git 文件和 README 中有仓库的配置信息,一定要警惕不能被覆盖掉,保持原来的就行。

    使用命令:

    # --exclude='.git*': 排除所有以.git开头的文件和目录
    # --exclude='README.md': 排除README.md文件
    rsync -av -o -t --exclude='.git*' --exclude='README.md' /root/agent_camp4/lagent/ /root/Lagent/
    
    • rsync 是一个强大的文件同步和传输工具,它可以实现增量备份,只传输发生变化的文件部分,这使得文件同步更加高效。rsync 中的 r 代表 remote(远程、跨系统),因为这个工具最初设计的主要目的是在远程系统之间同步文件。完整名称是:remote synchronization(远程同步)

    • rsync 不仅可以在本地使用,还特别适合:

    • 在不同主机之间同步文件
    • 通过 SSH 进行安全的远程文件传输
    • 在服务器之间进行备份和镜像
    • 基本语法

      rsync [选项] 源路径 目标路径
      
    • 常用选项说明

      • -a (archive mode):
        • 归档模式,保持原文件的所有属性
        • 相当于 -rlptgoD 的组合(递归、链接、权限、时间、组、所有者、设备文件)
      • -v (verbose):
        • 显示详细信息
        • 让你能看到正在传输哪些文件
      • -z (compress):
        • 传输时进行压缩
        • 适用于通过网络传输文件时。在本地传输时,通常不需要使用 -z 选项。
      • -e: 指定使用的远程shell命令
      • --progress:
        • 显示传输进度
      • --exclude:
        • 排除不需要同步的文件或目录
    • 使用示例:

      • 远程传输

        rsync -avz --progress -e "ssh命令" /local/folder/ user@remote:/remote/folder/
        # 例如
        # rsync -avz --progress -e "ssh -p 43543 -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" intern_study_L0_4/ root@ssh.intern-ai.org.cn:/root/intern_study_L0_4/
        
        
        # 传到远程之后可能需要更改文件的所有者
        chown -R root:root .
        # chown: 更改文件所有者(change owner)的基本命令
        # -R: 递归(Recursive)选项,表示对当前目录及其所有子目录和文件都进行操作
        # root:root: 指定新的所有者和所属组
        # 	第一个root是用户所有者(owner)
        #	第二个root是组所有者(group)
        # .: 表示当前目录,即命令执行位置的目录
        
      • 本地传输

        rsync -av --progress source/ destination/
        
posted @ 2025-03-01 12:49  sakuraLGGM  阅读(129)  评论(0)    收藏  举报