CVPR2018+ECCV2018目标检测算法汇总
特别感谢实验室小雷同学汇总此篇,日后学习目标跟踪可以有个好的方向好的借鉴,哪怕是比赛的时候选模型都可以参考一下。
----------------------------------------------------------
|
论文对应序号 |
method |
dataset |
code |
||
|
|
|
VOC2007 |
VOC2012 |
COCO |
|
|
1 |
Cascade R-CNN |
|
|
42.8(AP) |
有 |
|
2 |
Relation Net |
|
|
39.0(加到别的方法上) |
有 |
|
3 |
RefineDet |
85.8 |
86.8 |
41.8(AP) |
有 |
|
4 |
SNIP |
|
|
|
有 |
|
5 |
R-FCN-3000 |
43.3(ImageNet) |
无 |
||
|
6 |
DES |
84.3 |
83.7 |
32.8 |
无 |
|
7 |
STDN |
80.9 |
|
31.8 |
有 |
|
8 |
W2F |
52.4 |
47.8 |
|
无 |
|
9 |
无简写 |
51.2 |
|
|
无 |
|
10 |
MELM |
47.3 |
42.4 |
|
有 |
|
11 |
SSM |
62.9 |
|
|
有 |
|
12 |
无简写 |
82.9 |
|
35.6(AP) |
有 |
|
13 |
PAD |
80.7 |
79.5 |
|
无 |
|
14 |
ZLDN |
47.6 |
42.9 |
|
无 |
|
15 |
无简写 |
|
|
39.5 |
无 |
|
16 |
MegDet |
|
|
52.5(mmAP) |
无 |
|
17 |
drl-RPN |
76.4 |
72.2 |
|
有 |
|
18 |
SIN |
76.0 |
73.1 |
23.2(AP) |
有 |
|
19 |
SOD-MTGAN |
|
|
41.4(AP) |
无 |
|
20 |
ML-LocNet |
49.7 |
43.6 |
16.2(COCO2014) |
无 |
|
21 |
DetNet |
|
|
40.3 |
有 |
|
22 |
无简写 |
50.4 |
69.3 |
|
无 |
|
23 |
无简写 |
25.4 |
22.9 |
|
无 |
|
24 |
无简写 |
82.4 |
81.1 |
34.6(AP) |
无 |
|
25 |
RFB-NET |
82.2 |
|
29.7(COCO2014) 34.4(COCO2015) |
有 |
|
26 |
PFP-NET |
84.1 |
83.7 |
41.8 |
有 |
|
27 |
TS2C |
44.3 |
40.0 |
|
无 |
|
28 |
SAN |
82.8 |
|
43.4 |
无 |
|
29 |
无简写 |
|
81.2 |
mmAP:39.3(COCO2017) |
无 |
|
30 |
无简写 |
|
|
42.0(AP) |
无 |
附:
(1)论文对应序号中,序号1-18篇收录于CVPR,19-30收录于ECCV。
(2)在经典数据库的检测精度取在论文中实现的最高精度,不考虑base network。
(3)method列仅写出算法简称。
(4)针对COCO数据集的检测结果不可进行统一比较。有的是在COCO2014、COCO2015或者是COCO2017上测试,评价指标稍有不同。
(5)CVPR2019论文未公布。
======以下排名仅对论文中有在对应数据集测试的算法进行排序=========
VOC2007数据集排名
|
论文对应序号 |
method |
mAP |
排名 |
|
3 |
RefineDet |
85.8 |
1 |
|
6 |
DES |
84.3 |
2 |
|
26 |
PFP-NET |
84.1 |
3 |
|
12 |
无简写 |
82.9 |
4 |
|
28 |
SAN |
82.8 |
5 |
|
24 |
无简写 |
82.4 |
6 |
|
25 |
RFB-NET |
82.2 |
7 |
|
7 |
STDN |
80.9 |
8 |
|
13 |
PAD |
80.7 |
9 |
|
17 |
drl-RPN |
76.4 |
10 |
|
18 |
SIN |
76.0 |
11 |
|
11 |
SSM |
62.9 |
12 |
|
8 |
W2F |
52.4 |
13 |
|
9 |
无简写 |
51.2 |
14 |
|
22 |
无简写 |
50.4 |
15 |
|
20 |
ML-LocNet |
49.7 |
16 |
|
14 |
ZLDN |
47.6 |
17 |
|
10 |
MELM |
47.3 |
18 |
|
27 |
TS2C |
44.3 |
19 |
|
23 |
无简写 |
25.4 |
20 |
VOC2012数据集排名
|
论文对应序号 |
method |
mAP |
排名 |
|
3 |
RefineDet |
86.8 |
1 |
|
6 |
DES |
83.7 |
2 |
|
26 |
PFP-NET |
83.7 |
2 |
|
29 |
无简写 |
81.2 |
3 |
|
24 |
无简写 |
81.1 |
4 |
|
13 |
PAD |
79.5 |
5 |
|
18 |
SIN |
73.1 |
6 |
|
17 |
drl-RPN |
72.2 |
7 |
|
22 |
无简写 |
69.3 |
8 |
|
8 |
W2F |
47.8 |
9 |
|
20 |
ML-LocNet |
43.6 |
10 |
|
14 |
ZLDN |
42.9 |
11 |
|
10 |
MELM |
42.4 |
12 |
|
27 |
TS2C |
40.0 |
13 |
|
23 |
无简写 |
22.9 |
14 |
|
22 |
无简写 |
50.4 |
15 |
|
20 |
ML-LocNet |
49.7 |
16 |
|
14 |
ZLDN |
47.6 |
17 |
|
10 |
MELM |
47.3 |
18 |
|
27 |
TS2C |
44.3 |
19 |
|
23 |
无简写 |
25.4 |
20 |
COCO数据集排名
|
论文对应序号 |
method |
mAP |
排名 |
|
16 |
MegDet |
52.5(mmAP) |
1 |
|
28 |
SAN |
43.4 |
2 |
|
1 |
Cascade R-CNN |
42.8(AP) |
3 |
|
30 |
无简写 |
42.0(AP) |
4 |
|
26 |
PFP-NET |
41.8 |
5 |
|
3 |
RefineDet |
41.8(AP) |
6 |
|
19 |
SOD-MTGAN |
41.4(AP) |
7 |
|
21 |
DetNet |
40.3 |
8 |
|
15 |
无简写 |
39.5 |
9 |
|
29 |
无简写 |
mmAP:39.3(COCO2017) |
10 |
|
2 |
Relation Net |
39.0(加到别的方法上) |
11 |
|
12 |
无简写 |
35.6(AP) |
12 |
|
24 |
无简写 |
34.6(AP) |
13 |
|
25 |
RFB-NET |
29.7(COCO2014) 34.4(COCO2015) |
14 |
|
6 |
DES |
32.8 |
15 |
|
7 |
STDN |
31.8 |
16 |
|
18 |
SIN |
23.2(AP) |
17 |
|
20 |
ML-LocNet |
16.2(COCO2014) |
18 |
1、Cascaded RCNN
|
论文 |
Cascade R-CNN : Delving into High Quality Object Detection |
|
论文链接 |
https://arxiv.org/abs/1712.00726 |
|
代码链接 |
https://github.com/zhaoweicai/cascade-rcnn |
实验结果

2、Relation Net
|
论文 |
Relation Networks for Object Detection |
|
论文链接 |
https://arxiv.org/abs/1711.11575 |
|
代码链接 |
https://github.com/msracver/Relation-Networks-for-Object-Detection |
实验结果
(实验是针对two stage系列的目标检测算法而言,在ROI Pooling后的两个全连接层和NMS模块引入object relation module,如Figure1所示,因此做到了完整的end-to-end训练。)

3、RefineDet
|
论文 |
Single-Shot Refinement Neural Network for Object Detection |
|
论文链接 |
https://arxiv.org/abs/1711.06897 |
|
代码链接 |
https://github.com/sfzhang15/RefineDet |
实验结果


4、SNIP
|
论文 |
An Analysis of Scale Invariance in Object Detection – SNIP |
|
论文链接 |
https://arxiv.org/abs/1711.08189 |
|
代码链接 |
http://bit.ly/2yXVg4c(打不开) |
实验结果

5、R-FCN-3000
|
论文 |
R-FCN-3000 at 30fps: Decoupling Detection and Classification |
|
论文链接 |
https://arxiv.org/abs/1712.01802 |
|
代码链接 |
|
ImageNet实验结果

6、DES
|
论文 |
Single-Shot Object Detection with Enriched Semantics |
|
论文链接 |
https://arxiv.org/abs/1712.00433 |
|
代码链接 |
|
实验结果




7、STDN
|
论文 |
Scale-Transferrable Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf |
|
代码链接 |
https://github.com/arvention/STDN |
实验结果



8、W2F
|
论文 |
W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_W2F_A_Weakly-Supervised_CVPR_2018_paper.pd |
|
代码链接 |
|
实验结果


9、
|
论文 |
Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf |
|
代码链接 |
|
实验结果

10、MELM
|
论文 |
Min-Entropy Latent Model for Weakly Supervised Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf |
|
代码链接 |
https://github.com/Winfrand/MELM |
实验结果


11、SSM
|
论文 |
Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf |
|
代码链接 |
https://github.com/yanxp/SSM-Pytorch |
实验结果

12、
|
论文 |
Feature Selective Networks for Object Detection |
|
论文链接 |
https://arxiv.org/abs/1711.08879 |
|
代码链接 |
https://github.com/robwec/feature-selective-networks |
实验结果



13、PAD
|
论文 |
Pseudo Mask Augmented Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Pseudo_Mask_Augmented_CVPR_2018_paper.pdf |
|
代码链接 |
|
实验结果


14、ZLDN
|
论文 |
Zigzag Learning for Weakly Supervised Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Zigzag_Learning_for_CVPR_2018_paper.pdf |
|
代码链接 |
|
实验结果


15、
|
论文 |
Learning Globally Optimized Object Detector via Policy Gradient |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf |
|
代码链接 |
|
实验结果

16、MegDet
|
论文 |
MegDet: A Large Mini-Batch Object Detector |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf |
|
代码链接 |
|
实验结果
The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, where we won the 1st place of Detection task.

17、drl-RPN
|
论文 |
Deep Reinforcement Learning of Region Proposal Networks for Object Detection |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Pirinen_Deep_Reinforcement_Learning_CVPR_2018_paper.pdf |
|
代码链接 |
https://github.com/aleksispi/drl-rpn-tf |
实验结果


18、SIN
|
论文 |
Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships |
|
论文链接 |
http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf |
|
代码链接 |
https://github.com/choasup/SIN |
实验结果

以下是ECCV2018论文
19、SOD-MTGAN
论文:SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf
代码链接:
实验结果

20、ML-LocNet
论文:ML-LocNet: Improving Object Localization with Multi-view Learning Network
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Xiaopeng_Zhang_ML-LocNet_Improving_Object_ECCV_2018_paper.pdf
代码链接:
实验结果



21、DetNet
论文:DetNet: Design Backbone for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Zeming_Li_DetNet_Design_Backbone_ECCV_2018_paper.pdf
代码链接:https://github.com/guoruoqian/DetNet_pytorch
或者https://github.com/BigDeviltjj/mxnet-detnet
实验结果

22、
论文:Weakly Supervised Region Proposal Network and Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Peng_Tang_Weakly_Supervised_Region_ECCV_2018_paper.pdf
代码链接:
实验结果



23、
论文:Zero-Annotation Object Detection with Web Knowledge Transfer
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf
代码链接:
实验结果




24、
论文:Deep Feature Pyramid Reconfiguration for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Tao_Kong_Deep_Feature_Pyramid_ECCV_2018_paper.pdf
代码链接:
实验结果




25、RFB-NET
论文:Receptive Field Block Net for Accurate and Fast Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf
代码链接:https://github.com/ruinmessi/RFBNet
实验结果



26、PFP-NET
论文:Parallel Feature Pyramid Network for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Seung-Wook_Kim_Parallel_Feature_Pyramid_ECCV_2018_paper.pdf
代码链接:
实验结果


27、TS2C
论文:TS2C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yunchao_Wei_TS2C_Tight_Box_ECCV_2018_paper.pdf
代码链接:
实验结果

28、SAN
论文:
SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Kim_SAN_Learning_Relationship_ECCV_2018_paper.pdf
代码链接:
实验结果

29、
论文:Deep Regionlets for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Hongyu_Xu_Deep_Regionlets_for_ECCV_2018_paper.pdf
代码链接:
实验结果



30、
论文:Context Refinement for Object Detection
论文链接:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Zhe_Chen_Context_Refinement_for_ECCV_2018_paper.pdf
代码链接:
实验结果


浙公网安备 33010602011771号