每日定理17
Isaacs, $\textit{Character Theory of Finite Groups}$, Lemma(2.10)
If $g\in G$ and $g\neq1$, then $\rho(g)=0.$ Also $\rho(1)=|G|$.
Pf: Obviously.
Isaacs, $\textit{Character Theory of Finite Groups}$, Lemma(2.11)
$$\rho=\sum_{i=1}^k\chi_i(1)\chi_i.$$
Pf:
- $\mathbb{C}[G]=\bigoplus_{M_i\in\mathcal{M}(\mathbb{C}[G])}M_i(\mathbb{C}[G])$.
- $n_{M_i}(\mathbb{C}[G])=dim(M_i)=\chi_i(1)$
浙公网安备 33010602011771号