每日定理5
Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(1.10)
Let $V$ be an $A$-module. Then $V$ is completely reducible iff it is a sum of irreducible submodules.
Pf: Sufficiency $(\Leftarrow)$
- $V=\sum V_{\alpha}$ and $W\subseteq V$
- Choose $U\subseteq V$ maximal such that $W\cap U=0$
- Prove $V=W\oplus U$
Necessity $(\Rightarrow)$
- Let $S$ be the sum of all the irreducible submodules of $V$
- Prove by contradiction
Remark: Every $A$-module contains an irreducible submodule.
浙公网安备 33010602011771号