[luoguP3332] [ZJOI2013]K大数查询(树套树)
一开始想的是区间线段树套权值线段树,结果好像不能实现。
然后题解是权值线段树套区间线段树。
区间线段树上标记永久化就省去了pushdown的操作减少常数。
标记永久化的话。。yy不出来就看代码吧。
然后注意开long long
#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 50010
#define LL long long
using namespace std;
int n, m, t, cnt;
LL sum[N * 200];
int opt[N], a[N], b[N], c[N], g[N], add[N * 200], ls[N * 200], rs[N * 200], root[N << 2];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
inline void insert2(int &now, int l, int r, int x, int y)
{
if(!now) now = ++cnt;
if(x <= l && r <= y)
{
add[now]++;
sum[now] += r - l + 1;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert2(ls[now], l, mid, x, y);
if(mid < y) insert2(rs[now], mid + 1, r, x, y);
sum[now] = sum[ls[now]] + sum[rs[now]] + (LL)(r - l + 1) * add[now];
}
inline void insert1(int now, int l, int r, int d, int x, int y)
{
insert2(root[now], 1, n, x, y);
if(l == r) return;
int mid = (l + r) >> 1;
if(d <= mid) insert1(now << 1, l, mid, d, x, y);
else insert1(now << 1 | 1, mid + 1, r, d, x, y);
}
inline LL query2(int now, int l, int r, int x, int y)
{
if(x <= l && r <= y) return sum[now];
LL tmp = 0;
int mid = (l + r) >> 1;
if(x <= mid) tmp += query2(ls[now], l, mid, x, y);
if(mid < y) tmp += query2(rs[now], mid + 1, r, x, y);
return tmp + (LL)(min(r, y) - max(l, x) + 1) * add[now];
}
inline int query1(int now, int l, int r, LL d, int x, int y)
{
if(l == r) return l;
int mid = (l + r) >> 1;
LL tmp = query2(root[now << 1 | 1], 1, n, x, y);
if(tmp < d) return query1(now << 1, l, mid, d - tmp, x, y);
else return query1(now << 1 | 1, mid + 1, r, d, x, y);
}
int main()
{
int i;
n = read();
m = read();
for(i = 1; i <= m; i++)
{
opt[i] = read();
a[i] = read(), b[i] = read(), c[i] = read();
if(opt[i] == 1) g[++t] = c[i];
}
sort(g + 1, g + t + 1);
t = unique(g + 1, g + t + 1) - g - 1;
for(i = 1; i <= m; i++)
if(opt[i] == 1)
{
c[i] = lower_bound(g + 1, g + t + 1, c[i]) - g;
insert1(1, 1, t, c[i], a[i], b[i]);
}
else printf("%d\n", g[query1(1, 1, t, c[i], a[i], b[i])]);
return 0;
}

浙公网安备 33010602011771号