[BZOJ2733] [HNOI2012]永无乡(并查集 + 线段树合并)
一看到第k大就肯定要想到什么权值线段树,主席树,平衡树之类的
然后就简单了
用并查集判断连通,每个节点建立一颗权值线段树,连通的时候直接合并即可
查询时再二分递归地查找
时间复杂度好像不是很稳定。。。但hzwer都用这种方法水过。。
正解好像是平衡树+启发式合并,以后学TT
#include <cstdio>
#include <iostream>
#define N 100001
int n, m, q, cnt;
int a[N], f[N], sum[N * 20], ls[N * 20], rs[N * 20], root[N], id[N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
inline void insert(int &now, int l, int r, int x)
{
now = ++cnt;
if(l == r)
{
sum[now] = 1;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert(ls[now], l, mid, x);
else insert(rs[now], mid + 1, r, x);
sum[now] = sum[ls[now]] + sum[rs[now]];
}
inline void merge(int &x, int y)
{
if(!x || !y)
{
x += y;
return;
}
sum[x] += sum[y];
merge(ls[x], ls[y]);
merge(rs[x], rs[y]);
}
inline int query(int now, int l, int r, int x)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(sum[ls[now]] >= x)
return query(ls[now], l, mid, x);
else
return query(rs[now], mid + 1, r, x - sum[ls[now]]);
}
inline int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
int main()
{
int i, x, y;
char s[1];
n = read();
m = read();
for(i = 1; i <= n; i++)
{
f[i] = i;
x = read();
id[x] = i;
insert(root[i], 1, n, x);
}
for(i = 1; i <= m; i++)
{
x = find(read());
y = find(read());
if(x ^ y)
{
f[y] = x;
merge(root[x], root[y]);
}
}
q = read();
while(q--)
{
scanf("%s", s);
x = read();
y = read();
if(s[0] == 'B')
{
x = find(x);
y = find(y);
if(x ^ y)
{
f[y] = x;
merge(root[x], root[y]);
}
}
else
{
x = find(x);
if(y > sum[root[x]]) puts("-1");
else printf("%d\n", id[query(root[x], 1, n, y)]);
}
}
return 0;
}

浙公网安备 33010602011771号