[BZOJ4756] [Usaco2017 Jan]Promotion Counting(线段树合并)
此题很有意思,有多种解法
1.用天天爱跑步的方法,进入子树的时候ans-query,出去子树的时候ans+query,query可以用树状数组或线段树来搞
2.按dfs序建立主席树
3.线段树的合并
前两个都会,于是学习一下线段树的合并。。
道理用文字解释不清。。。直接看代码就能看懂。。
可以脑补出,合并的操作复杂度是logn的,总时间复杂度nlogn
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100001
int n, m, cnt, size;
int head[N], to[N << 1], next[N << 1], root[N], sum[N * 20], ls[N * 20], rs[N * 20], ans[N], a[N], b[N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
inline void add(int x, int y)
{
to[cnt] = y;
next[cnt] = head[x];
head[x] = cnt++;
}
inline void insert(int &now, int l, int r, int x)
{
now = ++size;
if(l == r)
{
sum[now] = 1;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert(ls[now], l, mid, x);
else insert(rs[now], mid + 1, r, x);
sum[now] = sum[ls[now]] + sum[rs[now]];
}
inline void merge(int &x, int y)
{
if(!x || !y)
{
x += y;
return;
}
sum[x] += sum[y];
merge(ls[x], ls[y]);
merge(rs[x], rs[y]);
}
inline int query(int now, int l, int r, int x, int y)
{
if(x <= l && r <= y) return sum[now];
int mid = (l + r) >> 1, ret = 0;
if(x <= mid) ret += query(ls[now], l, mid, x, y);
if(mid < y) ret += query(rs[now], mid + 1, r, x, y);
return ret;
}
inline void dfs(int u)
{
int i, v;
for(i = head[u]; i ^ -1; i = next[i])
{
v = to[i];
dfs(v);
merge(root[u], root[v]);
}
ans[u] = query(root[u], 1, m, a[u] + 1, m);
}
int main()
{
int i, x;
n = read();
memset(head, -1, sizeof(head));
for(i = 1; i <= n; i++) a[i] = b[i] = read();
for(i = 2; i <= n; i++)
{
x = read();
add(x, i);
}
std::sort(b + 1, b + n + 1);
m = std::unique(b + 1, b + n + 1) - b - 1;
for(i = 1; i <= n; i++)
a[i] = std::lower_bound(b + 1, b + m + 1, a[i]) - b;
for(i = 1; i <= n; i++)
insert(root[i], 1, m, a[i]);
dfs(1);
for(i = 1; i <= n; i++)
printf("%d\n", ans[i]);
return 0;
}

浙公网安备 33010602011771号