[luoguP2513] [HAOI2009]逆序对数列(DP)
f[i][j]表示前i个数,逆序对数为j的答案
则DP方程为:
f[1][0] = 1;
for(i = 2; i <= n; i++)
for(j = 0; j <= m; j++)
for(k = j; k < j + i; k++)
f[i][k] = (f[i][k] + f[i - 1][j]) % p;
但是会超时
所以搞个前缀和优化一下
#include <cstdio>
#include <iostream>
#define N 2001
#define p 10000
int n, m;
int f[N][N], sum[N][N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
int main()
{
int i, j, k;
n = read();
m = read();
f[1][0] = 1;
for(i = 0; i <= m; i++) sum[1][i] = 1;
for(i = 2; i <= n; i++)
for(j = 0; j <= m; j++)
{
if(j - i + 1 > 0)
f[i][j] = (f[i][j] + ((sum[i - 1][j] - sum[i - 1][j - i]) % p + p) % p) % p;
else
f[i][j] = (f[i][j] + sum[i - 1][j]) % p;
sum[i][j] = (sum[i][j - 1] + f[i][j]) % p;
}
printf("%d\n", f[n][m]);
return 0;
}

浙公网安备 33010602011771号