[luoguP1220] 关路灯(DP)
如果去关某一个灯,那么途中经过的灯都能关闭,那么就是连续一段区间,区间DP。
f[i][j][0] 表示关完 i, j 这个区间且在 i 这个位置
f[i][j][1] 表示关完 i, j 这个区间且在 j 这个位置
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 1001
#define min(x, y) ((x) < (y) ? (x) : (y))
int n, s;
int f[N][N][2], a[N], d[N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
int main()
{
int i, j;
n = read();
s = read();
for(i = 1; i <= n; i++) d[i] = read(), a[i] = read() + a[i - 1];
memset(f, 127 / 3, sizeof(f));
f[s][s][0] = f[s][s][1] = 0;
for(i = s; i >= 1; i--)
for(j = i + 1; j <= n; j++)
{
f[i][j][0] = min(f[i][j][0], f[i + 1][j][0] + (d[i + 1] - d[i]) * (a[n] - (a[j] - a[i])));
f[i][j][0] = min(f[i][j][0], f[i + 1][j][1] + (d[j] - d[i]) * (a[n] - (a[j] - a[i])));
f[i][j][1] = min(f[i][j][1], f[i][j - 1][0] + (d[j] - d[i]) * (a[n] - (a[j - 1] - a[i - 1])));
f[i][j][1] = min(f[i][j][1], f[i][j - 1][1] + (d[j] - d[j - 1]) * (a[n] - (a[j - 1] - a[i - 1])));
}
printf("%d\n", min(f[1][n][0], f[1][n][1]));
return 0;
}

浙公网安备 33010602011771号