考研高数 | 每日一题(1)

题目

已知 \(f(x, y)\) 为连续函数,则 $ \int_{0}^{\frac{\pi}{4}} \mathrm{d}\theta \int_{0}^{1} f(r\cos\theta, r\sin\theta) r \mathrm{d}r = ?$

(A) \(\int_{0}^{\frac{\sqrt{2}}{2}} \mathrm{d}x \int_{x}^{\sqrt{1-x^2}} f(x,y) \mathrm{d}y\) (B) \(\int_{0}^{\frac{\sqrt{2}}{2}} \mathrm{d}x \int_{0}^{\sqrt{1-x^2}} f(x,y) \mathrm{d}y\)
(C) \(\int_{0}^{\frac{\sqrt{2}}{2}} \mathrm{d}y \int_{y}^{\sqrt{1-y^2}} f(x,y) \mathrm{d}x\) (D) \(\int_{0}^{\frac{\sqrt{2}}{2}} \mathrm{d}y \int_{0}^{\sqrt{1-y^2}} f(x,y) \mathrm{d}x\)

知识点

  • 二重积分积分区域的表示

答案

(C)

解析

由题可知,积分区域为:

\(D=\left\{(r,\theta)|0\leqslant\theta\leqslant\frac{\pi}{4},0\leqslant r\leqslant1\right\}.\)

转化成直角坐标系为:

\(D=\left\{(x,y)|0\leqslant y\leqslant\frac{\sqrt{2}}{2},y\leqslant x\leqslant\sqrt{1-y^2}\right\}.\)

\(\int_{0}^{\frac{\pi}{4}} \mathrm{d}\theta \int_{0}^{1} f(r\cos\theta,r\sin\theta) r \mathrm{d}r = \int_{0}^{\frac{\sqrt{2}}{2}} \mathrm{d}y \int_{y}^{\sqrt{1-y^2}} f(x,y) \mathrm{d}x.\)

综上可知,本题应选 (C).

posted @ 2025-06-02 21:16  荒原之梦考研数学  阅读(62)  评论(0)    收藏  举报