随笔分类 - 机器学习
摘要:Deep Learning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞pytho...
阅读全文
摘要:分类问题也可以用降维来理解,比如一个D维的数据点x,我们可以采用下面的映射进行线性的降维,y=θTx在计算出y后,就可以选择一个阈值h,来进行分类。正如我们在前面的PCA模型中看到的,降维会有信息的损失,可能会在降维过程中,丢失使数据可分的特征,导致分类的效果不理想。那采用什么样的降维方式,可以尽量...
阅读全文
摘要:李航:http://research.microsoft.com/en-us/people/hangli/,是MSRA Web Search and Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习。近年来,主要与人合作使用机器学习方法对信息检索中排序,相关性...
阅读全文
摘要:机器学习的资料较多,初学者可能会不知道怎样去有效的学习,所以对这方面的资料进行了一个汇总,希望能够对和我一样的初学者有一定的借鉴。1. 数学基础机器学习是构建于数学的基础之上的,因此只有把数学的基本功打好,才能够在机器学习领域有长远的发展。正所谓”勿在浮沙筑高台“。微积分:微积分学教程 (F.M.菲...
阅读全文
摘要:转贴:看到的一个来源是http://blog.sina.com.cn/s/blog_631a4cc40101d00t.html,不确定是否是最原始版本。牛人主页(主页有很多论文代码)Serge Belongieat UC San DiegoAntonio Torralbaat MITAlexei F...
阅读全文
摘要:原始特征的数量可能很大,或者说样本是处于一个高维空间中,通过映射或变换的方法,降高维数据降低到低维空间中的数据,这个过程叫特征提取,也称降维。 特征提取得基本任务研究从众多特征中求出那些对分类最有效的特征,从而实现特征空间维数的压缩。传统的降维技术可以分为线性和非线性两类。(1)线性降维算法主要有P...
阅读全文
摘要:机器学习问题方法总结大类名称关键词有监督分类决策树信息增益分类回归树Gini指数,Χ2统计量,剪枝朴素贝叶斯非参数估计,贝叶斯估计线性判别分析Fishre判别,特征向量求解K最邻近相似度度量:欧氏距离、街区距离、编辑距离、向量夹角、Pearson相关系数逻辑斯谛回归(二值分类)参数估计(极大似然估计...
阅读全文
摘要:目前机器学习最热门的领域有以下七个,后面给出相应的资料链接:1. 迁移学习Transfer learning 。 http://www.cse.ust.hk/TL/index.html2. 半监督学习Semi-Supervised learning 。 http://pages.cs.wisc.ed...
阅读全文
摘要:EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是...
阅读全文
摘要:介绍一下奇异值分解来压缩图像。今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来。这里是用的不是图像序列了,只是单单的一幅图像,所以直接就对图像矩阵进行svd了。 吴军的《数学之美》里其实已经介绍过用svd进行大数据的压缩了,不...
阅读全文
摘要:PCA检测人脸的简单示例,matlab R2009b上实现训练:训练用的20副人脸:%训练%Lx=X'*Xclear;clc;train_path='..\Data\TrainingSet\';phi=zeros(64*64,20);for i=1:20path=strcat(train_path,...
阅读全文
摘要:对于PCA,一直都是有个概念,没有实际使用过,今天终于实际使用了一把,发现PCA还是挺神奇的。在OPENCV中使用PCA非常简单,只要几条语句就可以了。1、初始化数据//每一行表示一个样本CvMat* pData = cvCreateMat( 总的样本数, 每个样本的维数, CV_32FC1 );C...
阅读全文
摘要:前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的。本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类。 开发环境:ubuntu12.04+Qt4.8.2+QtCreator2.5.1+opencv2...
阅读全文
摘要:数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一...
阅读全文

浙公网安备 33010602011771号